A novel control system design to improve LVRT capability of fixed speed wind turbines using STATCOM in presence of voltage fault

Author(s):  
Hamed Heydari-doostabad ◽  
Mohammad Reza Khalghani ◽  
Mohammad Hassan Khooban
Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 567
Author(s):  
Adrian Gambier

advanced control system design for large wind turbines is becoming increasingly complex, and high-level optimization techniques are receiving particular attention as an instrument to fulfil this significant degree of design requirements. Multiobjective optimal (MOO) control, in particular, is today a popular methodology for achieving a control system that conciliates multiple design objectives that may typically be incompatible. Multiobjective optimization was a matter of theoretical study for a long time, particularly in the areas of game theory and operations research. Nevertheless, the discipline experienced remarkable progress and multiple advances over the last two decades. Thus, many high-complexity optimization algorithms are currently accessible to address current control problems in systems engineering. On the other hand, utilizing such methods is not straightforward and requires a long period of trying and searching for, among other aspects, start parameters, adequate objective functions, and the best optimization algorithm for the problem. Hence, the primary intention of this work is to investigate old and new MOO methods from the application perspective for the purpose of control system design, offering practical experience, some open topics, and design hints. A very challenging problem in the system engineering application of power systems is to dominate the dynamic behavior of very large wind turbines. For this reason, it is used as a numeric case study to complete the presentation of the paper.


Sign in / Sign up

Export Citation Format

Share Document