Determining maximum hosting capacity for PV systems in distribution grids

Author(s):  
Jingyi Yuan ◽  
Yang Weng ◽  
Chin-Woo Tan
2020 ◽  
Vol 11 (1) ◽  
pp. 180
Author(s):  
Karthikeyan Nainar ◽  
Jayakrishnan Radhakrishna Pillai ◽  
Birgitte Bak-Jensen

Integration of PV power generation systems at distribution grids, especially at low-voltage (LV) grids, brings in operational challenges for distribution system operators (DSOs). These challenges include grid over-voltages and overloading of cables during peak PV power production. Battery energy storage systems (BESS) are being installed alongside PV systems by customers for smart home energy management. This paper investigates the utilization of those BESS by DSOs for maintaining the grid voltages within limits. In this context, an incentive price based demand response (IDR) method is proposed for indirect control of charging/discharging power of the BESS according to the grid voltage conditions. It is shown that the proposed IDR method, which relies on a distributed computing application, is able to maintain the grid voltages within limits. The advantage of the proposed distributed implementation is that the DSOs can compute and communicate the incentive prices thereby encouraging customers to actively participate in the demand response program. An iterative distributed algorithm is used to compute the incentive prices of individual BESS to minimize the costs of net power consumption of the customer. The proposed IDR method is tested by conducting simulation studies on the model of a Danish LV grid for few study cases. The simulation results show that by using the proposed method for the control of BESS, node voltages are maintained within limits as well as the costs of net power consumption of BESS owners are minimized.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4021
Author(s):  
Jorge Luiz Moreira Pereira ◽  
Adonis Ferreira Raiol Leal ◽  
Gabriel Oliveira de Almeida ◽  
Maria Emília de Lima Tostes

The growth in global electricity demand has expanded the search for new energy resources. Renewable sources such as photovoltaic (PV) systems have proven to be major alternatives. PV generators connected to distribution grids have exhibited significant growth in the last decade, so it is essential to analyse the impacts resulting from this increase. This work investigated the influence of high PV system penetration in distribution grids in terms of harmonic levels. In particular, this study addressed the distortions in voltage and current waveforms in the presence and absence of PV generators connected to a distribution grid. Additionally, the total harmonic content and the individual harmonic frequencies of voltage and current were analysed. This study was performed with an IEEE 37 bus distribution system and the Open Distribution System Simulator software (OpenDSS). The results show that the voltage limits of some phases far away from a substation can exceed the limits. Furthermore, the total harmonic distortion (THD) and individual harmonic distortion (IHD) levels for voltage and current were significantly high for harmonics of the 3rd, 5th, and 7th orders, where current levels violate the standard levels.


2015 ◽  
Vol 6 (4) ◽  
pp. 1763-1774 ◽  
Author(s):  
Afshin Samadi ◽  
Lennart Soder ◽  
Ebrahim Shayesteh ◽  
Robert Eriksson

2014 ◽  
Vol 71 ◽  
pp. 315-323 ◽  
Author(s):  
Afshin Samadi ◽  
Ebrahim Shayesteh ◽  
Robert Eriksson ◽  
Barry Rawn ◽  
Lennart Söder

2014 ◽  
Vol 29 (3) ◽  
pp. 1454-1464 ◽  
Author(s):  
Afshin Samadi ◽  
Robert Eriksson ◽  
Lennart Soder ◽  
Barry G. Rawn ◽  
Jens C. Boemer

2018 ◽  
Vol 1 (3) ◽  
Author(s):  
IJE Manager

In the past century, fossil fuels have dominated energy supply in Indonesia. However, concerns over emissions are likely to change the future energy supply. As people become more conscious of environmental issues, alternatives for energy are sought to reduce the environmental impacts. These include renewable energy (RE) sources such as solar photovoltaic (PV) systems. However, most RE sources like solar PV are not available continuously since they depend on weather conditions, in addition to geographical location. Bali has a stable and long sunny day with 12 hours of daylight throughout the year and an average insolation of 5.3 kWh/m2 per day. This study looks at the potential for on-grid solar PV to decarbonize energy in Bali. A site selection methodology using GIS is applied to measure solar PV potential. Firstly, the study investigates the boundaries related to environmental acceptability and economic objectives for land use in Bali. Secondly, the potential of solar energy is estimated by defining the suitable areas, given the technical assumptions of solar PV. Finally, the study extends the analysis to calculate the reduction in emissions when the calculated potential is installed. Some technical factors, such as tilting solar, and intermittency throughout the day, are outside the scope of this study. Based on this model, Bali has an annual electricity potential for 32-53 TWh from solar PV using amorphous thin-film silicon as the cheapest option. This potential amount to three times the electricity supply for the island in 2024 which is estimated at 10 TWh. Bali has an excessive potential to support its own electricity demand with renewables, however, some limitations exist with some trade-offs to realize the idea. These results aim to build a developmental vision of solar PV systems in Bali based on available land and the region’s irradiation.


Sign in / Sign up

Export Citation Format

Share Document