A tes

2018 ◽  
Vol 1 (3) ◽  
Author(s):  
IJE Manager

In the past century, fossil fuels have dominated energy supply in Indonesia. However, concerns over emissions are likely to change the future energy supply. As people become more conscious of environmental issues, alternatives for energy are sought to reduce the environmental impacts. These include renewable energy (RE) sources such as solar photovoltaic (PV) systems. However, most RE sources like solar PV are not available continuously since they depend on weather conditions, in addition to geographical location. Bali has a stable and long sunny day with 12 hours of daylight throughout the year and an average insolation of 5.3 kWh/m2 per day. This study looks at the potential for on-grid solar PV to decarbonize energy in Bali. A site selection methodology using GIS is applied to measure solar PV potential. Firstly, the study investigates the boundaries related to environmental acceptability and economic objectives for land use in Bali. Secondly, the potential of solar energy is estimated by defining the suitable areas, given the technical assumptions of solar PV. Finally, the study extends the analysis to calculate the reduction in emissions when the calculated potential is installed. Some technical factors, such as tilting solar, and intermittency throughout the day, are outside the scope of this study. Based on this model, Bali has an annual electricity potential for 32-53 TWh from solar PV using amorphous thin-film silicon as the cheapest option. This potential amount to three times the electricity supply for the island in 2024 which is estimated at 10 TWh. Bali has an excessive potential to support its own electricity demand with renewables, however, some limitations exist with some trade-offs to realize the idea. These results aim to build a developmental vision of solar PV systems in Bali based on available land and the region’s irradiation.

2018 ◽  
Vol 1 (2) ◽  
pp. 5-20
Author(s):  
Ami Syanalia ◽  
Fikriyah Winata

In the past century, fossil fuels have dominated energy supply in Indonesia. However, concerns over emissions are likely to change the future energy supply. As people become more conscious of environmental issues, alternatives for energy are sought to reduce the environmental impacts. These include renewable energy (RE) sources such as solar photovoltaic (PV) systems. However, most RE sources like solar PV are not available continuously since they depend on weather conditions, in addition to geographical location. Bali has a stable and long sunny day with 12 hours of daylight throughout the year and an average insolation of 5.3 kWh/m2 per day. This study looks at the potential for on-grid solar PV to decarbonize energy in Bali. A site selection methodology using GIS is applied to measure solar PV potential. Firstly, the study investigates the boundaries related to environmental acceptability and economic objectives for land use in Bali. Secondly, the potential of solar energy is estimated by defining the suitable areas, given the technical assumptions of solar PV. Finally, the study extends the analysis to calculate the reduction in emissions when the calculated potential is installed. Some technical factors, such as tilting solar, and intermittency throughout the day, are outside the scope of this study. Based on this model, Bali has an annual electricity potential for 32-53 TWh from solar PV using amorphous thin-film silicon as the cheapest option. This potential amount to three times the electricity supply for the island in 2024 which is estimated at 10 TWh. Bali has an excessive potential to support its own electricity demand with renewables, however, some limitations exist with some trade-offs to realize the idea. These results aim to build a developmental vision of solar PV systems in Bali based on available land and the region’s irradiation. Keywords: Energy modelling, solar PV, energy policy


Author(s):  
Ramzi Alahmadi ◽  
◽  
Kamel Almutairi ◽  

With the increasing global concerns about greenhouse gas emissions caused by the extensive use of fossil fuels, many countries are investing in the deployment of clean energy sources. The utilization of abundant solar energy is one of the fastest growing deployed renewable sources due its technological maturity and economic competitivity. In addition to report from the National Renewable Energy Laboratory (NREL), many studies have suggested that the maturity of solar energy systems will continue to develop, which will increase their economic viability. The focus of analysis in this paper is countries with hot desert climates since they are the best candidates for solar energy systems. The capital of Saudi Arabia, Riyadh is used as the case study due to the country’s ambitious goals in this field. The main purpose of this study is to comprehensively analyze the stochastic behavior and probabilistic distribution of solar irradiance in order to accurately estimate the expected power output of solar systems. A solar Photovoltaic (PV) module is used for the analysis due to its practicality and widespread use in utility-scale projects. In addition to the use of a break-even analysis to estimate the economic viability of solar PV systems in hot desert climates, this paper estimates the indifference point at which the economic feasibility of solar PV systems is justified, compared with the fossil-based systems. The numerical results show that the break-even point of installing one KW generation capacity of a solar PV system is estimated to pay off after producing 16,827 KWh, compared to 15,422 KWh for the case of fossil-based systems. However, the increased cost of initial investment in solar PV systems deployment starts to be economically justified after producing 41,437 KWh.


2021 ◽  
Author(s):  
Vijay Bhaskar Chiluveru

<div><div>In the current scenario of increasing demand for solar photovoltaic (PV) systems, the need to predict their feasibility and performance is more than ever. Irradiance of a geographical location almost exclusively determines the generation possible via solar. Hence, accurate irradiance data is required to assess the value of solar PV systems. Emphasizing such need, this paper presents a method of estimating global horizontal irradiance (GHI) using the two dimensional (2-D) spatial interpolation technique. The proposed model is geo-agnostic and can estimate irradiance depending on the geographical range of the input data. This paper also compares the model predictions with a standard irradiation dataset in the industry. This comparison helps in getting insights regarding the spatio-temporal trends in recent times. As part of our asset management, solar PV plants spread all over India have irradiation sensors whose measures are sent to our servers on a real-time basis. This is incorporated into our in-house analytics portal which is developed for operations and monitoring. Thus, the data is organized for each plant with its geographical parameters (latitude and longitude) along with Global Tilted Irradiation (GTI) measured by on ground sensors. T-factors (calculated as function of tilt, azimuth of the site) corresponding to each sensor orientation are also known which are used to obtain Global Horizontal Irradiation (GHI) values. As part of our study, the increasing predominance of solar PV as a renewable source of energy is discussed. This has focused the attention on the need to have quality irradiation data. The above research has been as an endeavour to use a data-driven approach to solve the issue at hand. Hopefully, this work can showcase the power of using data-intensive techniques such as the one shown to solve the many challenges in the energy industry especially those in solar. The model is built using irradiation sensor data pan India and used an effective spatial interpolation technique, kriging, to produce the gap-filled estimates. The statistical measures of estimate error are also mentioned which show impressive accuracy. Heat maps for respective months have also been produced for better visualization of GHI trends. An independent dataset of industrial benchmarking standards is also compared with the estimates to better understand the temporal GHI trends with respect to long-term averaged values. The assessment of this work’s potential is for the industrial community to ascertain as this can have various use cases of immense business value.</div></div>


2021 ◽  
Vol 10 (3) ◽  
pp. 125-139
Author(s):  
Mochammad Donny Anggoro ◽  
Diana Siregar ◽  
Regina Ninggar ◽  
Satriyo Wicaksono ◽  
Soo Hee Lee

The solar PV systems are semiconductor devices that precisely convert sunlight into electricity, through the transfer of electrons. They provide several advantages, such as high modularity, zero noise, and adequate availability of solar resources in Indonesia. Therefore, this study aims to determine the potency, policy perspective, and Cost-Benefit Analysis (CBA) of the solar energy implementation for electricity generation. A statistical analysis was used for measuring potency, as well as reviewing opportunistic policies and barriers. A review of some CBA-based journals was also carried out, to determine that the development of solar power electricity had more benefit than fossil fuels and LCOE (Levelized Cost Of Electricity). The results of the 10-days average value calculation in 2019 were 388-563 W/m2, with the maximum values at 1137-1604 W/m2. Meanwhile the analysis of the maximum hourly averages for Western, Central, and Eastern Indonesia were 570-719, 634-758, and 559-627 W/m2 at 11.00-12.00 WIB, 11.00-13.00 WITA, and 12.00-13.00 WIT, respectively. The potency of solar radiation intensity in Indonesia was averagely 150-750 W/m2, as the highest values were found in East Nusa Tenggara, Maluku, and Merauke.


2021 ◽  
Author(s):  
Vijay Bhaskar Chiluveru

<div><div>In the current scenario of increasing demand for solar photovoltaic (PV) systems, the need to predict their feasibility and performance is more than ever. Irradiance of a geographical location almost exclusively determines the generation possible via solar. Hence, accurate irradiance data is required to assess the value of solar PV systems. Emphasizing such need, this paper presents a method of estimating global horizontal irradiance (GHI) using the two dimensional (2-D) spatial interpolation technique. The proposed model is geo-agnostic and can estimate irradiance depending on the geographical range of the input data. This paper also compares the model predictions with a standard irradiation dataset in the industry. This comparison helps in getting insights regarding the spatio-temporal trends in recent times. As part of our asset management, solar PV plants spread all over India have irradiation sensors whose measures are sent to our servers on a real-time basis. This is incorporated into our in-house analytics portal which is developed for operations and monitoring. Thus, the data is organized for each plant with its geographical parameters (latitude and longitude) along with Global Tilted Irradiation (GTI) measured by on ground sensors. T-factors (calculated as function of tilt, azimuth of the site) corresponding to each sensor orientation are also known which are used to obtain Global Horizontal Irradiation (GHI) values. As part of our study, the increasing predominance of solar PV as a renewable source of energy is discussed. This has focused the attention on the need to have quality irradiation data. The above research has been as an endeavour to use a data-driven approach to solve the issue at hand. Hopefully, this work can showcase the power of using data-intensive techniques such as the one shown to solve the many challenges in the energy industry especially those in solar. The model is built using irradiation sensor data pan India and used an effective spatial interpolation technique, kriging, to produce the gap-filled estimates. The statistical measures of estimate error are also mentioned which show impressive accuracy. Heat maps for respective months have also been produced for better visualization of GHI trends. An independent dataset of industrial benchmarking standards is also compared with the estimates to better understand the temporal GHI trends with respect to long-term averaged values. The assessment of this work’s potential is for the industrial community to ascertain as this can have various use cases of immense business value.</div></div>


2021 ◽  
Vol 2 (1) ◽  
pp. 37-43
Author(s):  
John Vourdoubas

European islands are pioneers in the development of renewable energy technologies. Aim of the current research is to investigate the possibility of zeroing the net annual carbon emissions due to electricity generation in the island of Crete, Greece. Crete, with population 634,930 permanent residents, has abundant solar and wind energy resources while electricity generation from solar-PV systems and wind farms is highly profitable. The electric grid of Crete was autonomous so far but currently its interconnection with the grid of continental Greece is under construction. This will allow soon the transfer of large amounts of electricity between Crete and the mainland. When excess electricity will be generated by solar and wind energy systems in the island it could be transferred in mainland and vice-versa. Carbon neutrality due to electricity generation in Crete can be achieved with local generation of “green solar and wind electricity” combined with electricity transfer via two electric cables with the mainland. Annual electricity generation in Crete is currently at 3,043 GWh while 21.22% of it is generated by renewable energies. Carbon emissions due to electricity generation are calculated at 3.22 tnCO2/capita. It has been estimated that the required size of solar-PV systems generating annually the electricity currently produced by fossil fuels in Crete is at 1,698 MWp while their cost is at 2.04 bil. €. The required size of wind farms generating annually the electricity currently produced by fossil fuels is at 950.6 MWel while their cost is at 0.914 bil. €. It is concluded that carbon neutrality due to electricity generation in Crete is technically and economically feasible.


2018 ◽  
Vol 4 (12) ◽  
pp. 8
Author(s):  
Neha Singh ◽  
Prof. Govind Prasad Pandiya

To maximize solar Photovoltaic (PV) output under dynamic weather conditions, Maximum Power Point Tracking (MPPT) controllers are incorporated in solar PV systems. Implementing the MPPT algorithm through digital controllers is easier if it is possible to minimize error functions. The differences between the various MPPT techniques are very slight and they can be evaluated according to the situation. In this work a modified version of adapative reference voltage algorithm has been designed. The model has been simulated in MATLAB/ SIMULINK environment. The modeling of adaptive reference PSO based MPPT algorithm has resulted in considerable improvement in the power output from the PV module. The power output with adaptive reference PSO MPPT algorithm at the load terminal has improved from 3959 Watts to 4969 watts approximately.


Author(s):  
Mohammad Tauquir Iqbal ◽  
Mohd Tariq

This paper presents the modeling, analysis and control of different DC-DC converter topologies to emulate the photovoltaic (PV) system. A PV emulator is basically a DC-DC converter having same electrical characteristics that of solar PV panel.  The emulator helps to achieve real characteristics of PV system in a better way in an environment where using actual PV systems can produce inconsistent results due to variation in weather conditions. The paper describes different types of DC-DC converters like buck, Resonant and Quasi Resonant Converter. The complete system is modelled in MATLAB<sup>®</sup> Simulink SimPowerSystem software package. The Simulation results obtained from the MATLAB<sup>®</sup> Simulink SimPowerSystem software package for different topologies under steady and dynamic conditions are analyzed and presented. An evaluation table is also presented at the end of the paper, presenting the effectiveness of each topology.


Author(s):  
Mohammad Tauquir Iqbal ◽  
Mohd Tariq

This paper presents the modeling, analysis and control of different DC-DC converter topologies to emulate the photovoltaic (PV) system. A PV emulator is basically a DC-DC converter having same electrical characteristics that of solar PV panel. The emulator helps to achieve real characteristics of PV system in a better way in an environment where using actual PV systems can produce inconsistent results due to variation in weather conditions. The paper describes different types of DC-DC converters like buck, Resonant and Quasi Resonant Converter. The complete system is modelled in MATLAB® Simulink SimPowerSystem software package. The Simulation results obtained from the MATLAB® Simulink SimPowerSystem software package for different topologies under steady and dynamic conditions are analyzed and presented. An evaluation table is also presented at the end of the paper, presenting the effectiveness of each topology.


Author(s):  
O. Phillips Agboola ◽  
Faut Egelioglu ◽  
O. Mary Agboola

In this paper the feasibility of using photovoltaic cells to reduce electricity generation from fossil fuels in North Cyprus (N. Cyprus) was studied. In this work it is proposed to use photovoltaic systems to power heating and cooling systems (i.e., mainly heat pumps) in household units and it was found that this is economically feasible. It was also discovered that despite the extensive use of solar water heaters in N. Cyprus, the awareness of photovoltaic cells is still very low and few house owners take advantage of its economic and environmental friendliness. It was also observed that PV cells are not widely available in the local market; coupled with the fact that formal awareness of energy friendly electricity means is not well promoted in developing countries. The result of this work shows that about 40% of yearly electricity consumption in N. Cyprus, which is mainly generated from plants using fuel oil no. 6, can be reduced if all household units use PV systems to heat or cool the house depending on the weather conditions. According to the electricity forecast carried out in this paper it was observed that the annual net electricity consumption is expected to increase by 30.65% in the year 2015. This means that the utility company will need to augment its current facilities to accommodate the increment; by expanding its facilities or opting for energy conservation policies. The latter has proved to be inefficient in this part of the world; the former will increase the use of fossil fuel thereby increasing the CO2 emission. This work also provides economic analysis for PV systems investment for household owners and policies to help increase availability of PV cells in N. Cyprus market.


Sign in / Sign up

Export Citation Format

Share Document