scholarly journals Demand side management of energy consumption in a photovoltaic integrated greenhouse

Author(s):  
Kai Zhang ◽  
Jihua Yu ◽  
Yan Ren
2017 ◽  
Vol 871 ◽  
pp. 77-86
Author(s):  
Stefanie Kabelitz ◽  
Sergii Kolomiichuk

The supply of electricity is growing increasingly dependent on the weather as the share of renewable energies increases. Different measures can nevertheless maintain grid reliability and quality. These include the use of storage technologies, upgrades of the grid and options for responsiveness to supply and demand. This paper focuses on demand side management and the use of flexibility in production processes. First, the framework of Germany’s energy policy is presented and direct and indirect incentives for businesses to seek as well as to provide flexibility capabilities are highlighted. Converting this framework into a mixed integer program leads to multi-objective optimization. The challenge inherent to this method is realistically mapping the different objectives that affect business practices directly and indirectly in a variety of laws. An example is introduced to demonstrate the complexity of the model and examine the energy flexibility. Second, manufacturing companies’ energy efficiency is assessed under the frequently occurring conditions of heavily aggregated energy consumption data and of information with insufficient depth of detail to perform certain analyses, formulate actions or optimize processes. The findings obtained from the energy assessment and energy consumption projections are used to model the production system’s energy efficiency and thus facilitate optimization. Methods of data mining and machine learning are employed to project energy consumption. Aggregated energy consumption data and different production and environmental parameters are used to assess indirectly measured consumers and link projections of energy consumption with the production schedule.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4539 ◽  
Author(s):  
Kumar ◽  
Brar ◽  
Singh ◽  
Nikolovski ◽  
Baghaee ◽  
...  

With the ever-growing power demand, the energy efficiency in commercial and residential buildings is a matter of great concern. Also, strategic energy auditing (SEA) and demand-side management (DSM) are cost-effective means to identify the requirements of power components and their operation in the energy management system. In a commercial or residential building, the major components are light sources and heating, ventilation, and air conditioning. The number of these components to be installed depends upon the technical and environmental standards. In this scenario, energy auditing (EA) allows identifying the methods, scope, and time for energy management, and it helps the costumers to manage their energy consumption wisely to reduce electricity bills. In the literature, most of the traditional strategies employed specific system techniques and algorithms, whereas, in recent years, load shifting-based DSM techniques were used under different operating scenarios. Considering these facts, the energy data in a year were collected under three different seasonal changes, i.e., severe cold, moderate, and severe heat for the variation in load demand under different environmental conditions. In this work, the energy data under three conditions were averaged, and the DSM schemes were developed for the operation of power components before energy auditing and after energy auditing. Moreover, the performance of the proposed DSM techniques was compared with the practical results in both scenarios, and, from the results, it was observed that the energy consumption reduced significantly in the proposed DSM approach.


2010 ◽  
Vol 1 (3) ◽  
pp. 320-331 ◽  
Author(s):  
Amir-Hamed Mohsenian-Rad ◽  
Vincent W. S. Wong ◽  
Juri Jatskevich ◽  
Robert Schober ◽  
Alberto Leon-Garcia

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 30386-30397 ◽  
Author(s):  
Huiling Cai ◽  
Shoupeng Shen ◽  
Qingcheng Lin ◽  
Xuefeng Li ◽  
Hui Xiao

2021 ◽  
Vol 5 (2) ◽  
pp. 18-25
Author(s):  
Hassan Abdulsalam ◽  
Ibrahim Nuhu

World development increased dramatically ever since the Industrial Revolution, in particular after  second world war (WWII), which drove the rise of energy consumption. Thus, energy consumption in the World has been growing continuously in the past 50 years. Using micro Combined Heat and Power (mCHP) allows energy scheduling and demand-side management depending on different variables which will benefit users and suppliers. Different researches have been conducted due to increasing interest from researchers to increase and optimise the advantages of energy scheduling. In addition to the mCHP system, optimisation process also includes distributed energy sources (solar panels) with electricity storage. On the demand side, various devices with different load profiles which can be controlled over time can be considered. This study therefore, being a desktop based one, sought to review the energy demand-side management as it applies to the use of mCHP in residential settings.


2017 ◽  
pp. 550-574 ◽  
Author(s):  
Sadiq Ahmad ◽  
Ayaz Ahmad ◽  
Raziq Yaqub

This chapter reviews prevailing methodologies and future techniques to optimize energy consumption. It discerns that smart grid provides better tools and equipment to control and monitor the consumer load, and optimize the energy consumption. Smart grid is essentially composed of smart energy equipment, advance metering infrastructure and Phasor Measurement Units (Synchrophaors) that helps to achieve optimized energy consumption. The chapter also places focus on demand side management and optimized energy consumption scheduling; and establishes that both, the utilities, as well as the users can play a vital role in intelligent energy consumption and optimization. The literature review also reveals smart protection, self-healing systems and off-peak operation result in minimizing transmission and distribution losses, as well as optimizing the energy consumption.


Author(s):  
Sadiq Ahmad ◽  
Ayaz Ahmad ◽  
Raziq Yaqub

This chapter reviews prevailing methodologies and future techniques to optimize energy consumption. It discerns that smart grid provides better tools and equipment to control and monitor the consumer load, and optimize the energy consumption. Smart grid is essentially composed of smart energy equipment, advance metering infrastructure and Phasor Measurement Units (Synchrophaors) that helps to achieve optimized energy consumption. The chapter also places focus on demand side management and optimized energy consumption scheduling; and establishes that both, the utilities, as well as the users can play a vital role in intelligent energy consumption and optimization. The literature review also reveals smart protection, self-healing systems and off-peak operation result in minimizing transmission and distribution losses, as well as optimizing the energy consumption.


Sign in / Sign up

Export Citation Format

Share Document