Power cycling thermal fatigue of Sn–Pb solder joints on a chip scale package

2004 ◽  
Vol 26 (5) ◽  
pp. 497-510 ◽  
Author(s):  
P Towashiraporn
2002 ◽  
Vol 124 (3) ◽  
pp. 212-220 ◽  
Author(s):  
John H. Lau ◽  
Stephen H. Pan ◽  
Chris Chang

A new empirical equation for predicting the thermal-fatigue life of wafer level chip scale package (WLCSP) solder joints on printed circuit board (PCB) is presented. The solder joints are subjected to thermal cycling and their crack lengths at different thermal cycles are measured. Also, the average strain energy density around the crack tip of different crack lengths in the corner solder joint is determined by a time-dependent nonlinear fracture mechanics with finite element method. The solder is assumed to be a temperature-dependent elastic-plastic and a time-dependent creep material.


2000 ◽  
Author(s):  
John H. Lau ◽  
Stephen H. Pan ◽  
Chris Chang

Abstract A new empirical equation for predicting the thermal-fatigue life of wafer level chip scale package (WLCSP) solder joints on printed circuit board (PCB) is presented. The solder joints are subjected to thermal cycling and their crack lengths at different thermal cycles are measured. Also, the average strain energy density around the crack tip of different crack lengths in the corner solder joint is determined by a time-dependent nonlinear fracture mechanics with finite element method. The solder is assumed to be a temperature-dependent elastic-plastic and a time-dependent creep material.


2001 ◽  
Vol 42 (5) ◽  
pp. 809-813 ◽  
Author(s):  
Young-Eui Shin ◽  
Kyung-Woo Lee ◽  
Kyong-Ho Chang ◽  
Seung-Boo Jung ◽  
Jae Pil Jung

Author(s):  
Tomohiro Takahashi ◽  
Qiang Yu ◽  
Masahiro Kobayashi

For power module, the reliability evaluation of thermal fatigue life by power cycling has been prioritized as an important concern. Since in power cycling produces there exists non-uniform temperature distribution in the power module, coupled thermal-structure analysis is required to evaluate thermal fatigue mechanism. The thermal expansion difference between a Si chip and a substrate causes thermal fatigue. In this study, thermal fatigue life of solder joints on power module was evaluated. The finite element method (FEM) was used to evaluate temperature distribution induced by joule heating. Higher temperature appears below the Al wire because the electric current flows through the bonding Al wire. Coupled thermal-structure analysis is also required to evaluate the inelastic strain distribution. The damage of each part of solder joint can be calculated from equivalent inelastic strain range and crack propagation was simulated by deleting damaged elements step by step. The initial cracks were caused below the bonding Al wire and propagated concentrically under power cycling. There is the difference from environmental thermal cycling where the crack initiated at the edge of solder layer. In addition, in order to accurately evaluate the thermal fatigue life, the factors affecting the thermal fatigue life of solder joint where verified using coupled electrical-thermal-structural analysis. Then, the relation between the thermal fatigue life of solder joint and each factor is clarified. The precision evaluation for the thermal fatigue life of power module is improved.


Sign in / Sign up

Export Citation Format

Share Document