Crack growth of physically small cracks

2007 ◽  
Vol 29 (9-11) ◽  
pp. 1658-1667 ◽  
Author(s):  
R JONES ◽  
L MOLENT ◽  
S PITT
Keyword(s):  
Author(s):  
Zbigniew Mikulski ◽  
Vidar Hellum ◽  
Tom Lassen

The present paper presents a two-phase model for the fatigue damage evolution in welded steel joints. The argument for choosing a two-phase model is that crack initiation and subsequent crack propagation involve different damage mechanisms and should be treated separately. The crack initiation phase is defined as the number of cycles to reach a crack depth of 0.1 mm. This phase is modelled based on the Dang Van multiaxial stress approach. Both a multiaxial stress situation introduced by the acting loads and the presence of the multiaxial welding residual stresses are accounted for. The local notch effect at the weld toe becomes very important and the irregular weld toe geometry is characterized by extreme value statistics for the weld toe angle and radius. The subsequent crack growth is based in classical fracture based on the Paris law including the effect of the Stress Intensity Factor Range (SIFR) threshold value. The unique fatigue crack growth rate curve suggested by Huang, Moan and Cui is adopted. This approach keeps the growth rate parameters C and m constant whereas an effective SIFR is calculated for the actual stress range and loading ratio. The model is developed and verified based on fatigue crack growth data from fillet welded joints where cracks are emanating from the weld toe. For this test series measured crack depths below 0.1 mm are available. The two-phase model was in addition calibrated to fit the life prediction in the rule based S-N curve designated category 71 (or class F). A supplementary S-N curve is obtained by the Random Fatigue Limit Method (RFLM). The test results and the fitted model demonstrated that the crack initiation phase in welded joins is significant and cannot be ignored. The results obtained by the Dang Van approach for the initiation phase are promising but the modelling is not yet completed. The fracture mechanics model for the propagation phase gives good agreement with measured crack growth. However, it seems that the prediction of crack retardation based on a threshold value for the SIFR gives a fatigue limit that is overly optimistic for small cracks at the weld toe. The threshold value has been determined based on tests with rather large central cracks in plates. The validity for applying this threshold value for small cracks at the weld toe is questioned. As the present two-phase model is based on applied mechanics for both phases the parameters that have an influence on the fatigue damage evolution are directly entering into the model. Any change in these parameters can then be explicitly taken into account in logical and rational manner for fatigue life predictions. This not the case with the rule based S-N curves that are based on pure statistical treatment of the bulk fatigue life.


1983 ◽  
Vol 18 (2) ◽  
pp. 285-294 ◽  
Author(s):  
P.W. Hovey ◽  
J.P. Gallagher ◽  
A.P. Berens

2018 ◽  
Vol 165 ◽  
pp. 13004
Author(s):  
Madeleine Burchill ◽  
Simon Barter ◽  
Lok Hin Chan ◽  
Michael Jones

The fatigue or durability life of a few critical structural metallic components often sets the safe and/or economic useful life of a military airframe. In the case of aluminium airframe components, growth rates, at or soon after fatigue crack nucleation are being driven by near threshold local cyclic stress intensities and thus are very low. Standard crack growth rate data is usually generated from large cracks, and therefore do not represent the growth of small cracks (typically <1mm). Discussed here is an innovative test and analysis technique to measure the growth rates of small cracks growing as the result of stress intensities just above the cyclic growth threshold. Using post-test quantitative fractographic examination of fatigue crack surfaces from a series of 7XXX test coupons, crack growth rates and observations of related growth phenomenon in the threshold region have been made. To better predict small crack growth rates under a range of aircraft loading spectra a method by which standard material data models could be adapted is proposed. Early results suggest that for small cracks this method could be useful in informing engineers on the relative severity of various spectra and leading to more accurate predictions of small crack growth rates which can dominate the fatigue life of airframe components.


2014 ◽  
Vol 891-892 ◽  
pp. 687-692 ◽  
Author(s):  
Paul White ◽  
David S. Mongru

Using ada/dNequation to predict fatigue crack growth for a variable amplitude loading sequence, requires converting the sequence into an equivalent series of constant amplitude cycles, which is sometimes achieved using the rainflow cycle counting technique. Rainflow counting views small intermediate cycles as an interruption to a larger cycle, in effect, the crack tip remembers the state of the larger cycle. This has been shown to be an effective technique in predicting fatigue growth rates for long cracks, but has not been extensively investigated for use in predicting the growth of small cracks. An investigation was made into the applicability of rainflow cycle counting for predicting the crack growth of small and long cracks created with variable amplitude fatigue loading in AA7050-T7451 plate, a common modern aircraft material. A series of coupons were tested with a number of different variable amplitude loading sequences which had distinct marker bands inserted to separate the individual segments of loading and enable them to be identified fractographically. For the sequences examined, which covered varying numbers of interrupted cycles and a staircase of three steps, the baseline and the rainflow loading segments within each sequence showed effectively the same rate of growth for the same stress intensity range in both the small and long crack coupons, demonstrating that rainflow cycle counting was a suitable cycle counting technique for both small and long cracks.


2014 ◽  
Vol 891-892 ◽  
pp. 942-947
Author(s):  
Hisatake Itoga ◽  
Hisao Matsunaga ◽  
Saburo Matsuoka

The fatigue crack growth (FCG) from a small hole in a low alloy steel JIS-SCM435 round bar was investigated using tension-compression fatigue tests in 0.7 MPa hydrogen gas and ambient air. In the higher FCG rate regime (e.g. da/dN > 108 m/cycle), FCG was accelerated in hydrogen gas compared to in air. On the other hand, in the lower FCG rate regime (e.g. da/dN < 108 m/cycle), FCG in hydrogen was rather slower than that in air. There was no noticeable difference in fatigue limits between these two atmospheres. The FCG in the respective atmospheres showed a typical small crack behavior, i.e. the da/dN for small cracks were much greater than those for large cracks obtained by compact tension (CT) specimen when they were compared at the same ΔK level. In order to unify such a discrepancy of FCG behavior between small crack and large crack, the strain intensity factor range ΔKε was adopted. As a result, the da/dN data for various crack sizes was gathered in a narrow band, i.e. the small crack effect was successfully evaluated with the strain intensity. Moreover, the crack growth life was predicted based on the da/dN-ΔKε relation. The reproduced S-N curve showed a conservative agreement with the fatigue life obtained by experiments.


Author(s):  
J. Been ◽  
R. Eadie ◽  
R. Sutherby

A model has been developed to predict crack growth on pipelines from environmentally assisted cracking in near-neutral pH environments (often-termed low-pH stress corrosion cracking (SCC)). The model is based on the results of cyclic loading experiments and is used in conjunction with pressure time variations in the pipeline determined from the operating SCADA records to predict the growth of an assumed existing crack in the pipe. The crack grows through different crack growth regimes, which are determined by the size of the pressure variations and the instantaneous crack dimensions. For a growing crack that experiences relatively high pressure fluctuations, as often encountered on liquid lines, reasonable crack growth predictions were made based on corrosion fatigue. An approach based on crack tip strain rate appears more suitable for the prediction of crack growth of small cracks and for cracks on gas lines with small pressure fluctuations. The model is designed so that the effect of stress intensifiers (like the long seam weld crown) that are often associated with these failures can be included. The model can be used in its present format for prioritizing inspections on both gas and liquid pipelines. Whereas predicted crack growth rates compare favorably with rates measured in the field, further work is required to incorporate additional mechanical and environmental effects, in particular to improve the prediction of small crack growth rates. Low crack velocities may be possible in the presence of small pressure fluctuations and low frequencies, but they may be less probable.


2019 ◽  
Vol 827 ◽  
pp. 216-221
Author(s):  
Masahiro Goto ◽  
Takaei Yamamoto ◽  
Junichi Kitamura ◽  
Seung Zeon Han ◽  
R. Takanami ◽  
...  

Stress-controlled fatigue tests were conducted on round-bar specimens to understand the fatigue behavior of precipitate-strengthened Cu–6Ni–1.5Si alloy. The cracks were initiated at the grain boundaries, followed by growth along the crystallographic slip planes in the adjacent grains. The crack growth data of plain specimens exhibited a large scatter, resulting in a difficulty of the measurement of crack growth rate. To evaluate the small-crack growth rate of the alloy, the plain specimens with a small blind hole as the crack starter were fatigued. The crack growth rate of small cracks from the hole was uniquely determined by a term σanl and the material constant, n, was 5.3. The term σanl with n = 5.3 was applied to the plain specimen, showing good applicability of the term to small cracks in the plain specimen.


Sign in / Sign up

Export Citation Format

Share Document