Concept of the highly strained volume for fatigue modeling of wrought magnesium alloys

2018 ◽  
Vol 117 ◽  
pp. 283-291 ◽  
Author(s):  
Josef Denk ◽  
Lawrence Whitmore ◽  
Otto Huber ◽  
Oliver Diwald ◽  
Holger Saage
Author(s):  
Amirhossein Pahlevanpour ◽  
Seyed Behzad Behravesh ◽  
Hamid Jahed

Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


2019 ◽  
Author(s):  
Terri Lovell ◽  
Curtis Colwell ◽  
Lev N. Zakharov ◽  
Ramesh Jasti

<p>[<i>n</i>]Cycloparaphenylenes, or “carbon nanohoops,” are unique conjugated macrocycles with radially oriented p-systems similar to those in carbon nanotubes. The centrosymmetric nature and conformational rigidity of these molecules lead to unusual size-dependent photophysical characteristics. To investigate these effects further and expand the family of possible structures, a new class of related carbon nanohoops with broken symmetry is disclosed. In these structures, referred to as <i>meta</i>[<i>n</i>]cycloparaphenylenes, a single carbon-carbon bond is shifted by one position in order to break the centrosymmetric nature of the parent [<i>n</i>]cycloparaphenylenes. Advantageously, the symmetry breaking leads to bright emission in the smaller nanohoops, which are typically non-fluorescent due to optical selection rules. Moreover, this simple structural manipulation retains one of the most unique features of the nanohoop structures-size dependent emissive properties with relatively large extinction coefficents and quantum yields. Inspired by earlier theoretical work by Tretiak and co-workers, this joint synthetic, photophysical, and theoretical study provides further design principles to manipulate the optical properties of this growing class of molecules with radially oriented p-systems.</p>


2019 ◽  
Author(s):  
Terri Lovell ◽  
Curtis Colwell ◽  
Lev N. Zakharov ◽  
Ramesh Jasti

<p>[<i>n</i>]Cycloparaphenylenes, or “carbon nanohoops,” are unique conjugated macrocycles with radially oriented p-systems similar to those in carbon nanotubes. The centrosymmetric nature and conformational rigidity of these molecules lead to unusual size-dependent photophysical characteristics. To investigate these effects further and expand the family of possible structures, a new class of related carbon nanohoops with broken symmetry is disclosed. In these structures, referred to as <i>meta</i>[<i>n</i>]cycloparaphenylenes, a single carbon-carbon bond is shifted by one position in order to break the centrosymmetric nature of the parent [<i>n</i>]cycloparaphenylenes. Advantageously, the symmetry breaking leads to bright emission in the smaller nanohoops, which are typically non-fluorescent due to optical selection rules. Moreover, this simple structural manipulation retains one of the most unique features of the nanohoop structures-size dependent emissive properties with relatively large extinction coefficents and quantum yields. Inspired by earlier theoretical work by Tretiak and co-workers, this joint synthetic, photophysical, and theoretical study provides further design principles to manipulate the optical properties of this growing class of molecules with radially oriented p-systems.</p>


2018 ◽  
pp. 27-31
Author(s):  
I.A. Gvozdkov ◽  
◽  
V.A. Belyaev ◽  
S.N. Potapov ◽  
V.N. Verbetsky ◽  
...  
Keyword(s):  

2015 ◽  
Vol 57 (2) ◽  
pp. 126-130
Author(s):  
Dorothea Amberger ◽  
Tina Blickle ◽  
Heinz Werner Höppel ◽  
Mathias Göken

Sign in / Sign up

Export Citation Format

Share Document