Equivalent energy-based critical plane fatigue damage parameter for multiaxial LCF under variable amplitude loading

2020 ◽  
Vol 131 ◽  
pp. 105350 ◽  
Author(s):  
Long Xue ◽  
De-Guang Shang ◽  
Dao-Hang Li ◽  
Luo-Jin Li ◽  
Xiao-Dong Liu ◽  
...  
Author(s):  
Alireza Shirazi ◽  
Hua Lu ◽  
Ahmad Varvani-Farahani

Trilayer structures such as flip chip plastic ball grid array (FC-PBGA) packages are bodies made of a large variety of dissimilar materials. Due to the coefficients of thermal expansion (CTE) mismatches between and temperature gradients within the layers, thermally induced interaction becomes a typical type of the loads for the joint layer made of lead-free solder joint interconnections. Thermal stresses and strains at the interfaces of solder joints and neighboring adhesive layers are the cause for solder joint fatigue failures, which account for the most common package failures. The current study puts forward a fatigue life prediction method for a trilayer structure using the critical plane-energy fatigue damage parameter in combination with the modified Coffin-Manson life model. The proposed method of calculated fatigue damage parameter for the samples of study, along with their experimental life (Nf50%) under two different thermal conditions is presented. The values of life in (0–100°C) condition and (25–125°C) with the same temperature ramp rate and dwell conditions are found to differ by a factor of 1.3 where the structures tested under (0–100°C) condition show lower lives. The present study further correlated the fatigue damage parameters with the Coffin-Manson type equation to calculate/predict the fatigue life of structures under (25–125°C) condition. The results of the Nf50 fatigue life prediction versus the experimental cycles show that the predicted lives of samples with SAC305 solder joints fall apart with a factor ranging from (1.24)∼(−1.45). The advantage of the proposed method in comparison with the existing methods in life prediction of the trilayer structure with solder alloy is that there are no empirical parameters involved in energy-critical plane damage parameter in life prediction of the trilayer structure. Parameters within the proposed approach purely involves mechanical and fatigue properties of the midlayer alloy.


Author(s):  
Philipp Rettenmeier ◽  
Karl-Heinz Herter ◽  
Xaver Schuler ◽  
Thomas Markus Fesich

Technical components are subjected to cyclic loading conditions that can be arbitrarily complex in the most general case. For analytical fatigue strength verifications in the finite life regime both the uniaxial material characteristics by means of Wöhler curves as well as a representative equivalent fatigue damage parameter (FDP) for multiaxial cyclic loadings have to be determined. For simple loading conditions, the fatigue assessment can be performed using well-known and verified strength hypotheses for quasi-static loading conditions. However, for complex non-proportional cyclic loading conditions with rotating principle stress directions the application of these hypotheses is not sufficiently verified. Hence, advanced stress, strain or energy based strength hypotheses in critical plane formulation are used. These hypotheses require considerable numerical efforts. The fatigue concept (MPA AIM-Life) enables an assessment of complex fatigue loading conditions with different advanced strength hypotheses. An interface to the finite element code ABAQUS allows the fatigue assessment of complex component geometries. Based on fatigue tests of specimens made from ferritic and austenitic materials under uniaxial and multiaxial loading conditions (tension/torsion) the accuracy of different strength hypotheses is demonstrated. Therefore the fatigue analysis assessment included in codes and standards is compared to different advanced fatigue damage parameters.


2005 ◽  
Vol 482 ◽  
pp. 109-114 ◽  
Author(s):  
Aleksander Karolczuk ◽  
Ewald Macha

The paper includes a review of literature on the multiaxial fatigue failure criteria based on the critical plane concept. The criteria were divided into three groups according to the distinguished fatigue damage parameter used in the criterion, i.e. (i) stress, (ii) strain and (iii) strain energy density criteria. Each criterion was described mainly by the applied the critical plane position. The multiaxial fatigue criteria based on two critical planes seem to be the most promising. These two critical planes are determined by different fatigue damage mechanisms (shear and tensile mechanisms).


2015 ◽  
Vol 60 (1) ◽  
pp. 101-105 ◽  
Author(s):  
A. Rutecka ◽  
Z.L. Kowalewski ◽  
K. Makowska ◽  
K. Pietrzak ◽  
L. Dietrich

Abstract The results of comparative examinations of mechanical behaviour during fatigue loads and microstructure assessment before and after fatigue tests were presented. Composites of aluminium matrix and SiC reinforcement manufactured using the KoBo method were investigated. The combinations of two kinds of fatigue damage mechanisms were observed. The first one governed by cyclic plasticity and related to inelastic strain amplitude changes and the second one expressed in a form of ratcheting based on changes in mean inelastic strain. The higher SiC content the less influence of the fatigue damage mechanisms on material behaviour was observed. Attempts have been made to evaluate an appropriate fatigue damage parameter. However, it still needs further improvements.


2012 ◽  
Vol 26 (11) ◽  
pp. 3439-3446 ◽  
Author(s):  
Hong Chen ◽  
De-Guang Shang ◽  
Yu-Jie Tian ◽  
Jian-Zhong Liu

Sign in / Sign up

Export Citation Format

Share Document