Application of Advanced Fatigue Damage Parameters in Comparison With Fatigue Analysis Included in Codes and Standards

Author(s):  
Philipp Rettenmeier ◽  
Karl-Heinz Herter ◽  
Xaver Schuler ◽  
Thomas Markus Fesich

Technical components are subjected to cyclic loading conditions that can be arbitrarily complex in the most general case. For analytical fatigue strength verifications in the finite life regime both the uniaxial material characteristics by means of Wöhler curves as well as a representative equivalent fatigue damage parameter (FDP) for multiaxial cyclic loadings have to be determined. For simple loading conditions, the fatigue assessment can be performed using well-known and verified strength hypotheses for quasi-static loading conditions. However, for complex non-proportional cyclic loading conditions with rotating principle stress directions the application of these hypotheses is not sufficiently verified. Hence, advanced stress, strain or energy based strength hypotheses in critical plane formulation are used. These hypotheses require considerable numerical efforts. The fatigue concept (MPA AIM-Life) enables an assessment of complex fatigue loading conditions with different advanced strength hypotheses. An interface to the finite element code ABAQUS allows the fatigue assessment of complex component geometries. Based on fatigue tests of specimens made from ferritic and austenitic materials under uniaxial and multiaxial loading conditions (tension/torsion) the accuracy of different strength hypotheses is demonstrated. Therefore the fatigue analysis assessment included in codes and standards is compared to different advanced fatigue damage parameters.

2015 ◽  
Vol 60 (1) ◽  
pp. 101-105 ◽  
Author(s):  
A. Rutecka ◽  
Z.L. Kowalewski ◽  
K. Makowska ◽  
K. Pietrzak ◽  
L. Dietrich

Abstract The results of comparative examinations of mechanical behaviour during fatigue loads and microstructure assessment before and after fatigue tests were presented. Composites of aluminium matrix and SiC reinforcement manufactured using the KoBo method were investigated. The combinations of two kinds of fatigue damage mechanisms were observed. The first one governed by cyclic plasticity and related to inelastic strain amplitude changes and the second one expressed in a form of ratcheting based on changes in mean inelastic strain. The higher SiC content the less influence of the fatigue damage mechanisms on material behaviour was observed. Attempts have been made to evaluate an appropriate fatigue damage parameter. However, it still needs further improvements.


Author(s):  
Alireza Shirazi ◽  
Hua Lu ◽  
Ahmad Varvani-Farahani

Trilayer structures such as flip chip plastic ball grid array (FC-PBGA) packages are bodies made of a large variety of dissimilar materials. Due to the coefficients of thermal expansion (CTE) mismatches between and temperature gradients within the layers, thermally induced interaction becomes a typical type of the loads for the joint layer made of lead-free solder joint interconnections. Thermal stresses and strains at the interfaces of solder joints and neighboring adhesive layers are the cause for solder joint fatigue failures, which account for the most common package failures. The current study puts forward a fatigue life prediction method for a trilayer structure using the critical plane-energy fatigue damage parameter in combination with the modified Coffin-Manson life model. The proposed method of calculated fatigue damage parameter for the samples of study, along with their experimental life (Nf50%) under two different thermal conditions is presented. The values of life in (0–100°C) condition and (25–125°C) with the same temperature ramp rate and dwell conditions are found to differ by a factor of 1.3 where the structures tested under (0–100°C) condition show lower lives. The present study further correlated the fatigue damage parameters with the Coffin-Manson type equation to calculate/predict the fatigue life of structures under (25–125°C) condition. The results of the Nf50 fatigue life prediction versus the experimental cycles show that the predicted lives of samples with SAC305 solder joints fall apart with a factor ranging from (1.24)∼(−1.45). The advantage of the proposed method in comparison with the existing methods in life prediction of the trilayer structure with solder alloy is that there are no empirical parameters involved in energy-critical plane damage parameter in life prediction of the trilayer structure. Parameters within the proposed approach purely involves mechanical and fatigue properties of the midlayer alloy.


2005 ◽  
Vol 482 ◽  
pp. 109-114 ◽  
Author(s):  
Aleksander Karolczuk ◽  
Ewald Macha

The paper includes a review of literature on the multiaxial fatigue failure criteria based on the critical plane concept. The criteria were divided into three groups according to the distinguished fatigue damage parameter used in the criterion, i.e. (i) stress, (ii) strain and (iii) strain energy density criteria. Each criterion was described mainly by the applied the critical plane position. The multiaxial fatigue criteria based on two critical planes seem to be the most promising. These two critical planes are determined by different fatigue damage mechanisms (shear and tensile mechanisms).


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 341
Author(s):  
Marc Thiele ◽  
Stephan Pirskawetz

The fatigue process of concrete under compressive cyclic loading is still not completely explored. The corresponding damage processes within the material structure are especially not entirely investigated. The application of acoustic measurement methods enables a better insight into the processes of the fatigue in concrete. Normal strength concrete was investigated under compressive cyclic loading with regard to the fatigue process by using acoustic methods in combination with other nondestructive measurement methods. Acoustic emission and ultrasonic signal measurements were applied together with measurements of strains, elastic modulus, and static strength. It was possible to determine the anisotropic character of the fatigue damage caused by uniaxial loading based on the ultrasonic measurements. Furthermore, it was observed that the fatigue damage seems to consist not exclusively of load parallel oriented crack structures. Rather, crack structures perpendicular to the load as well as local compacting are likely components of the fatigue damage. Additionally, the ultrasonic velocity appears to be a good indicator for fatigue damage beside the elastic modulus. It can be concluded that acoustic methods allow an observation of the fatigue process in concrete and a better understanding, especially in combination with further measurement methods.


Author(s):  
Francesca Cura` ◽  
Graziano Curti ◽  
Raffaella Sesana

This paper presents a thermomechanical model to predict the surface temperature evolution of a specimen during a fatigue test. In particular, the aim of this theoretical approach is to evaluate the amount of accumulated fatigue damage in the material, on the basis of its temperature growth indicated as damage parameter. To do that, a thermomechanical model has been developed and applied to a unidimensional steel specimen, with rectangular cross-section, fatigued by alternate axial stresses. Temperature variation along the thickness of the specimen has been disregarded. Thermomechanical differential equation has been integrated by applying both initial and boundary conditions. Temperature evolution of steel specimens measured during fatigue tests by means of thermographic techniques has been compared to the corresponding predicted by the theoretical model.


Author(s):  
Takashi Ogata

High temperature components in thermal power plants are subjected to creep and creep-fatigue loading where creep voids initiate and grow on grain boundaries. Development of a quantitative evaluation method of the void growth is important for reliable maintenance of these components. In this study, creep and creep-fatigue tests were carried out at 600 °C on a 1Cr-Mo-V casting steel. Creep damaged materials were produced by interrupting the creep tests and microstructure of the damaged materials were observed carefully by a scanning microscope. The creep-fatigue tests were also conducted in a scanning electron microscope, and continuous observation of void growth behavior during the tests was made. From the observations, spherical shape voids initiate and grow up to their length of 2μm on grain boundaries at initial stage of damage, and then these voids change their shape to crack-like to grow until their length reaches around 10μm under both the creep and the creep-fatigue conditions. Under the same stress level, the void growth rate in the creep-fatigue condition was faster than that in the creep condition indicating acceleration of void growth rate by cyclic loading. Previously proposed void growth simulation model, in which the void growth was controlled by diffusion and power law creep, was modified to express acceleration of the void growth by the cyclic loading. Void growth behavior within a certain area under both the creep and the creep-fatigue condition were simulated by the modified program. Predicted void growth behaviors agreed with observed ones. The void growth behavior of an actual turbine casing was also simulated and void growth behavior was discussed based on the result.


Sign in / Sign up

Export Citation Format

Share Document