Creep–fatigue interaction behavior of nickel-based single crystal superalloy at high temperature by in-situ SEM observation

2020 ◽  
Vol 141 ◽  
pp. 105879
Author(s):  
Zhen Wang ◽  
Wenwang Wu ◽  
Jiecun Liang ◽  
Xide Li
2014 ◽  
Vol 891-892 ◽  
pp. 1027-1032 ◽  
Author(s):  
Wen Zhu Wang ◽  
Masao Sakane ◽  
Takamoto Itoh ◽  
Akira Yoshinari ◽  
Nobuhiro Isobe ◽  
...  

This paper discusses an evaluation method of creep-fatigue lives of YH61 single crystal superalloy under multiaxial loading at high temperature. Three types of creep-fatigue tests were performed using three types of the single crystalsuperalloy specimens at 1173K. They were push-pull tests using solid bar specimens, tension-torsion tests using hollow cylinder specimens and biaxial tension-compression tests using cruciform specimens. Anisotropic strain and Mises stress in combination with frequency modified fatigue equation were applied for evaluating the creep-fatigue lives in the three types of tests. The former parameter gave a relatively large scatter but the latter parameter a small scatter in the correlation.


2021 ◽  
pp. 111180
Author(s):  
Keli Liu ◽  
Junsheng Wang ◽  
Bing Wang ◽  
Pengcheng Mao ◽  
Yanhong Yang ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1047
Author(s):  
Wenxiang Jiang ◽  
Xiaoyi Ren ◽  
Jinghao Zhao ◽  
Jianli Zhou ◽  
Jinyao Ma ◽  
...  

An in situ scanning electron microscope (SEM) tensile test for Ni-based single-crystal superalloy was carried out at 1000 °C. The stress displacement was obtained, and the yield strength and tensile strength of the superalloy were 699 MPa and 826 MPa, respectively. The crack propagation process, consisting of Model I crack and crystallographic shearing crack, was determined. More interestingly, the crack propagation path and rate affected by eutectics was directly observed and counted. Results show that the coalescence of the primary crack and second microcrack at the interface of a γ/γ′ matrix and eutectics would make the crack propagation rate increase from 0.3 μm/s to 0.4 μm/s. On the other hand, crack deflection decreased the rate to 0.05 μm/s. Moreover, movement of dislocations in front of the crack was also analyzed to explain the different crack propagation behavior in the superalloy.


Sign in / Sign up

Export Citation Format

Share Document