Influence of heat treatment on the corrosion behaviour of stainless steels during CO2-sequestration into saline aquifer

2013 ◽  
Vol 15 ◽  
pp. 213-224 ◽  
Author(s):  
A. Pfennig ◽  
P. Zastrow ◽  
A. Kranzmann
Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D. Matlock

Thermomechanically induced strain is a key variable producing accelerated carbide precipitation, sensitization and stress corrosion cracking in austenitic stainless steels (SS). Recent work has indicated that higher levels of strain (above 20%) also produce transgranular (TG) carbide precipitation and corrosion simultaneous with the grain boundary phenomenon in 316 SS. Transgranular precipitates were noted to form primarily on deformation twin-fault planes and their intersections in 316 SS.Briant has indicated that TG precipitation in 316 SS is significantly different from 304 SS due to the formation of strain-induced martensite on 304 SS, though an understanding of the role of martensite on the process has not been developed. This study is concerned with evaluating the effects of strain and strain-induced martensite on TG carbide precipitation in 304 SS. The study was performed on samples of a 0.051%C-304 SS deformed to 33% followed by heat treatment at 670°C for 1 h.


Alloy Digest ◽  
1981 ◽  
Vol 30 (7) ◽  

Abstract AISI No. 633 is a chromium-nickel-molybdenum stainless steel whose properties can be changed by heat treatment. It bridges the gap between the austenitic and martensitic stainless steels; that is, it has some of the properties of each. Its uses include high-strength structural applications, corrosion-resistant springs and knife blades. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-389. Producer or source: Stainless steel mills.


2002 ◽  
Vol 16 (4) ◽  
pp. 307-311
Author(s):  
V E Laz'ko ◽  
V I Lukin ◽  
T L Maksimovich

Author(s):  
Zheming Zhang ◽  
Ramesh Agarwal

With recent concerns on CO2 emissions from coal fired electricity generation plants; there has been major emphasis on the development of safe and economical Carbon Dioxide Capture and Sequestration (CCS) technology worldwide. Saline reservoirs are attractive geological sites for CO2 sequestration because of their huge capacity for sequestration. Over the last decade, numerical simulation codes have been developed in U.S, Europe and Japan to determine a priori the CO2 storage capacity of a saline aquifer and provide risk assessment with reasonable confidence before the actual deployment of CO2 sequestration can proceed with enormous investment. In U.S, TOUGH2 numerical simulator has been widely used for this purpose. However at present it does not have the capability to determine optimal parameters such as injection rate, injection pressure, injection depth for vertical and horizontal wells etc. for optimization of the CO2 storage capacity and for minimizing the leakage potential by confining the plume migration. This paper describes the development of a “Genetic Algorithm (GA)” based optimizer for TOUGH2 that can be used by the industry with good confidence to optimize the CO2 storage capacity in a saline aquifer of interest. This new code including the TOUGH2 and the GA optimizer is designated as “GATOUGH2”. It has been validated by conducting simulations of three widely used benchmark problems by the CCS researchers worldwide: (a) Study of CO2 plume evolution and leakage through an abandoned well, (b) Study of enhanced CH4 recovery in combination with CO2 storage in depleted gas reservoirs, and (c) Study of CO2 injection into a heterogeneous geological formation. Our results of these simulations are in excellent agreement with those of other researchers obtained with different codes. The validated code has been employed to optimize the proposed water-alternating-gas (WAG) injection scheme for (a) a vertical CO2 injection well and (b) a horizontal CO2 injection well, for optimizing the CO2 sequestration capacity of an aquifer. These optimized calculations are compared with the brute force nearly optimized results obtained by performing a large number of calculations. These comparisons demonstrate the significant efficiency and accuracy of GATOUGH2 as an optimizer for TOUGH2. This capability holds a great promise in studying a host of other problems in CO2 sequestration such as how to optimally accelerate the capillary trapping, accelerate the dissolution of CO2 in water or brine, and immobilize the CO2 plume.


2008 ◽  
Vol 50 (9) ◽  
pp. 2572-2579 ◽  
Author(s):  
J.H. Potgieter ◽  
P.A. Olubambi ◽  
L. Cornish ◽  
C.N. Machio ◽  
El-Sayed M. Sherif

Sign in / Sign up

Export Citation Format

Share Document