Welding high‐strength thick stainless steels after strengthening by heat treatment

2002 ◽  
Vol 16 (4) ◽  
pp. 307-311
Author(s):  
V E Laz'ko ◽  
V I Lukin ◽  
T L Maksimovich
Alloy Digest ◽  
1981 ◽  
Vol 30 (7) ◽  

Abstract AISI No. 633 is a chromium-nickel-molybdenum stainless steel whose properties can be changed by heat treatment. It bridges the gap between the austenitic and martensitic stainless steels; that is, it has some of the properties of each. Its uses include high-strength structural applications, corrosion-resistant springs and knife blades. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-389. Producer or source: Stainless steel mills.


2006 ◽  
Vol 15-17 ◽  
pp. 531-536 ◽  
Author(s):  
W. Xu ◽  
D. San Martin ◽  
Pedro E.J. Rivera-Díaz-del-Castillo ◽  
Sybrand van der Zwaag

High molybdenum high strength stainless steels can contain the so-called Chi phase (Fe36Cr12Mo10). The presence of this phase, which normally occurs at grain boundaries, depletes the chromium content leading to intergranular corrosion. This may cause alloy embrittlement during long term use. The presence of such phase has proven to be highly sensitive to alloy processing parameters such as the cooling rate after a final heat treatment. The present work provides a model to quantify the effects of processing parameters aimed at controlling the Chi phase. The model is based on nucleation and growth classical theories involving capillarity effects for the early stages; it is applied to a range of heat treatment conditions and compared to experimental results.


1994 ◽  
Vol 376 ◽  
Author(s):  
P. LukÁš ◽  
J. Janovec ◽  
K. Macek ◽  
P. Mikula ◽  
P. Strunz ◽  
...  

ABSTRACTThe dependence of residual stresses in martensitic-austenitic age-hardenable steels on a different technological treatment (welding by electron beam, postweld heat treatment) were investigated using a neutron diffraction. Experiments were performed in NPI Řež on a high-resolution diffractometer equipped with cylindrically bent perfect crystals. The resolution of the instrument (Δd/d ≈ 10-4; d-lattice spacing) enabled us to investigate plastic strains in weld joints.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Ashkaan Ozlati ◽  
Mojtaba Movahedi

Abstract Effect of the in situ post weld heat treatment (PWHT) was investigated on the flash profile, austenite/ferrite phase balance, and mechanical properties of the upset resistance dissimilar weld between Fe-Cr-Ni and Fe-Cr stainless steels rods. In order to explore the effect of the heat treatment on the joint strength, two as-welded samples with low strength (116 MPa) and high strength (372 MPa) were used. The results showed that in situ PWHT was beneficial for both welded samples, though in different ways. For the weld with low strength, PWHT improved the joint strength (∼130% increase in the optimum condition compared with the as-welded sample) due to the increase in the size of the flash and the related bonded area at the joint interface. However, ferrite percent in the weld zone increased from ∼50% up to ∼70%. For the sample with the high strength, ferrite/austenite phase balance was restored at an optimum condition of PWHT. However, the joint strength decreased slightly (less than 5%) due to the grain growth in the Fe-Cr rod, i.e., the fracture location. Fracture analysis was used for justification of the variations in the joint strength. For both Fe-Cr-Ni side and Fe-Cr side of the welds, in situ PWHT generally reduced the hardness. This observation is discussed in light of the simultaneous effects of the grain growth and formation of little martensite.


Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D. Matlock

Thermomechanically induced strain is a key variable producing accelerated carbide precipitation, sensitization and stress corrosion cracking in austenitic stainless steels (SS). Recent work has indicated that higher levels of strain (above 20%) also produce transgranular (TG) carbide precipitation and corrosion simultaneous with the grain boundary phenomenon in 316 SS. Transgranular precipitates were noted to form primarily on deformation twin-fault planes and their intersections in 316 SS.Briant has indicated that TG precipitation in 316 SS is significantly different from 304 SS due to the formation of strain-induced martensite on 304 SS, though an understanding of the role of martensite on the process has not been developed. This study is concerned with evaluating the effects of strain and strain-induced martensite on TG carbide precipitation in 304 SS. The study was performed on samples of a 0.051%C-304 SS deformed to 33% followed by heat treatment at 670°C for 1 h.


Alloy Digest ◽  
2000 ◽  
Vol 49 (10) ◽  

Abstract CMW 100 is a copper alloy that combines high tensile strength with high electrical and thermal conductivity. It responds to age-hardening heat treatment. It is used for flash welding dies, springs, electrical components, high-strength backing material for brazed assemblies, and wire guides. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CU-29. Producer or source: CMW Inc. Originally published as Mallory 100, August 1955, revised October 2000.


Alloy Digest ◽  
1964 ◽  
Vol 13 (7) ◽  

Abstract CONFLEX 720 is a copper-manganese-nickel alloy that responds to an age-hardening heat treatment for high strength and corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: Cu-143. Producer or source: Metals & Controls Inc..


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1969 ◽  
Vol 18 (11) ◽  

Abstract Aluminum A356 is a sand and permanent mold casting alloy that responds to an age-hardening heat treatment. It is recommended for aircraft and missile components where high strength and corrosion resistance are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on heat treating, machining, and joining. Filing Code: Al-192. Producer or source: Aluminum Company of America.


Alloy Digest ◽  
1953 ◽  
Vol 2 (1) ◽  

Abstract Chase TELNIC BRONZE is a high strength copper-base alloy, hardenable both by heat treatment and cold work, and also having good conductivity, corrosion resistance, cold and hot workability, and excellent machinability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: Cu-4. Producer or source: Chase Brass & Copper Company Inc..


Sign in / Sign up

Export Citation Format

Share Document