CO2 capture by chemical absorption in coal-fired power plants: Energy-saving mechanism, proposed methods, and performance analysis

2015 ◽  
Vol 39 ◽  
pp. 449-462 ◽  
Author(s):  
Guoqiang Zhang ◽  
Yongping Yang ◽  
Gang Xu ◽  
Kai Zhang ◽  
Dongke Zhang
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jashanpreet Singh ◽  
Jatinder Pal Singh

Purpose This study aims to deal with development and performance analysis of high-velocity oxy-fuel (HVOF) thermally sprayed Mo2C-based WC-CoCr (tungsten carbine cobalt chrome) (Co-10% and Cr-4%) cermet coating deposited on the pump impeller steel 316 L. Design/methodology/approach In this work, a study was carried out by modifying the conventional WC-CoCr powder with a small addition of molybdenum carbide (Mo2C). Reinforcement was done by 1–4 wt.% addition of Mo2C feedstocks in WC-CoCr powder by using a jar ball mill process. The design of experiment was implemented for optimization of the percentage of Mo2C feedstock. L16 (4 × 4) orthogonal array was used to design the experiments for erosion output for the input parameters namely velocity, particle size, concentration and Mo2C proportion. Findings Results show that the Mo2C-based WC-CoCr coating provides better microhardness as compared to conventional WC-CoCr coating. The present study also reveals that the deposition of conventional WC-CoCr coating has improved the wear resistance of SS 316 L by 9.98%. However, the slurry erosion performance of conventional WC-CoCr coating was improved as 69.6% by the addition of 3% Mo2C. Practical implications WC-CoCr coatings are universally used for protecting the equipment and machinery from abrasion, erosion and corrosion. So, the 3% Mo2C-based WC-CoCr can be useful in power plants and various industries like mining, chemical, automobile, cementing and food processing industries. Originality/value A new HVOF coating has been developed by the addition of Mo2C feedstock in WC-CoCr powder (Co 10% and Cr 4%) and the percentage of Mo2C feedstock was optimized to improve the tribological behavior of WC-CoCr coating.


2012 ◽  
Vol 2 (2) ◽  
pp. 80-98 ◽  
Author(s):  
Jochen Oexmann ◽  
Alfons Kather ◽  
Sebastian Linnenberg ◽  
Ulrich Liebenthal

2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Dengji Zhou ◽  
Tingting Wei ◽  
Shixi Ma ◽  
Huisheng Zhang ◽  
Di Huang ◽  
...  

Abstract Digital power plant is the theory and method to improve the operating quality of power plant by quantifying, analyzing, controlling, and deciding the physical and working objects of power plants in the whole life cycle. And the foundation of digital power plant is system modeling and performance analysis. However, there are some problems in the process of modeling establishment and performance analysis. For instance, each component has different dimensions and different types of mathematical description, and the data or information used for modeling are defined differently and belong to different enterprises, who do not want to share their information. Meta-modeling is a potential method to solve these problems. It defines the specification to describe different kinds of elements and the relationship between different elements. In this paper, the collaborative modeling and simulation platform for digital power plant has been established based on the meta-modeling method and the performance of the target power plant has been analyzed from different aspects via field data. The meta-modeling method consists of three parts: syntax definition, model development, and algorithm definition. In the comparative study between the meta-model and the traditional model, maximum average errors of the two methods are 8.72% and 4.74%, which reveals the high accuracy of the meta-modeling-based model. The result shows that the modeling and simulation platform for power plants can be used to reduce costs, decrease equipment failure rate, and improve plant output, so as to guarantee the safety and increase economics.


Author(s):  
Ana R. Diaz

The tendency in the world energy demand seems clear: it can only grow. The energetic industry will satisfy this demand-despite all its dialectic about new technologies-at least medium term mostly with current fossil fuel technologies. In this picture from an engineer’s point of view, one of the primary criterions for mitigating the effects of increasing atmospheric concentration of CO2 is to restrict the CO2 fossil fuel emissions into the atmosphere. This paper is focused on the analysis of different CO2 capture technologies for power plants. Indeed, one of the most important goal to concentrate on is the CO2 capture energy requirements, as it dictates the net size of the power plant and, hence, the net cost of power generation with CO2 avoidance technologies. Here, the Author presents a critical review of different CO2 absorption capture technologies. These technologies have been widely analyzed in the literature under chemical and economic points of view, leaving their impact on the energy power plant performance in a second plan. Thus, the central question examined in this paper is the connection between abatement capability and its energetic requirements, which seriously decrease power generation efficiency. Evidencing that the CO2 capture needs additional technical effort and establishing that further developments in this area must be constrained by reducing its energy requirements. After a comprehensive literature revision, six different chemical absorption methods are analyzed based on a simplified energetic model, in order to account for its energetic costs. Furthermore, an application case study is provided where the different CO2 capture systems studied are coupled to a natural gas cogeneration power plant.


Sign in / Sign up

Export Citation Format

Share Document