scholarly journals Large eddy simulations of isothermal confined swirling flow in an industrial gas-turbine

Author(s):  
G. Bulat ◽  
W.P. Jones ◽  
S. Navarro-Martinez
2007 ◽  
Vol 583 ◽  
pp. 99-122 ◽  
Author(s):  
SHANWU WANG ◽  
VIGOR YANG ◽  
GEORGE HSIAO ◽  
SHIH-YANG HSIEH ◽  
HUKAM C. MONGIA

A comprehensive study on confined swirling flows in an operational gas-turbine injector was performed by means of large-eddy simulations. The formulation was based on the Favre-filtered conservation equations and a modified Smagorinsky treatment of subgrid-scale motions. The model was then numerically solved by means of a preconditioned density-based finite-volume approach. Calculated mean velocities and turbulence properties show good agreement with experimental data obtained from the laser-Doppler velocimetry measurements. Various aspects of the swirling flow development (such as the central recirculating flow, precessing vortex core and Kelvin–Helmholtz instability) were explored in detail. Both co- and counter-rotating configurations were considered, and the effects of swirl direction on flow characteristics were examined. The flow evolution inside the injector is dictated mainly by the air delivered through the primary swirler. The impact of the secondary swirler appears to be limited.


Author(s):  
Tao Ren ◽  
Michael F. Modest ◽  
Somesh Roy

Radiative heat transfer is studied numerically for reacting swirling flow in an industrial gas turbine burner operating at a pressure of 15 bar. The reacting field characteristics are computed by Reynolds-averaged Navier-Stokes (RANS) equations using the k-ε model with the partially stirred reactor (PaSR) combustion model. The GRI-Mech 2.11 mechanism, which includes nitrogen chemistry, is used to demonstrate the the ability of reducing NOx emissions of the combustion system. A Photon Monte Carlo (PMC) method coupled with a line-by-line spectral model is employed to accurately account for the radiation effects. CO2, H2O and CO are assumed to be the only radiatively participating species and wall radiation is considered as well. Optically thin and PMC-gray models are also employed to show the differences between the simplest radiative calculation models and the most accurate radiative calculation model, i.e., PMC-LBL, for the gas turbine burner. It was found that radiation does not significantly alter the temperature level as well as CO2 and H2O concentrations. However, it has significant impacts on the NOx levels at downstream locations.


Author(s):  
Charlie Koupper ◽  
Jean Lamouroux ◽  
Stephane Richard ◽  
Gabriel Staffelbach

In a gas turbine, the combustor is feeding the turbine with hot gases at a high level of turbulence which in turns strongly enhances the heat transfer in the turbine. It is thus of primary importance to properly characterize the turbulence properties found at the exit of a combustor to design the turbine at its real thermal constraint. This being said, real engine measurements of turbulence are extremely rare if not inexistent because of the harsh environment and difficulty to implement experimental techniques that usually operate at isothermal conditions (e.g. hot wire anemometry). As a counterpart, high fidelity unsteady numerical simulations using Large Eddy Simulations (LES) are now mature enough to simulate combustion processes and turbulence within gas turbine combustors. It is thus proposed here to assess the LES methodology to qualify turbulence within a real helicopter engine combustor operating at take-off conditions. In LES, the development of turbulence is primarily driven by the level of real viscosity in the calculation, which is the sum of three contributions: laminar (temperature linked), turbulent (generated by the sub-grid scale model) and artificial (numerics dependent). In this study, the impact of the two main sources of un-desired viscosity is investigated: the mesh refinement and numerical scheme. To do so, three grids containing 11, 33 and 220 million cells for a periodic sector of the combustor are tested as well as centred second (Lax-Wendroff) and third order (TTGC) in space schemes. The turbulence properties (intensity and integral scales) are evaluated based on highly sampled instantaneous solutions and compared between the available simulations. Results show first that the duration of the simulation is important to properly capture the level of turbulence. If short simulations (a few combustor through-times) may be sufficient to evaluate the turbulence intensity, a bias up to 14% is introduced for the turbulence length scales. In terms of calculation set-up, the mesh refinement is found to have a limited influence on the turbulence properties. The numerical scheme influence on the quantities studied here is small, highlighting that the employed schemes dissipation properties are already sufficient for turbulence characterization. Finally, spatially averaged values of turbulence intensity and lengthscale at the combustor exit are almost identically predicted in all cases. However, significant variations from hub to tip are reported, which questions the pertinence to use 0-D turbulence boundary conditions for turbines. Based on the set of simulations discussed in the paper, guidelines can be derived to adequately set-up (mesh, scheme) and run (duration, acquisition frequency) a LES when turbulence evaluation is concerned. As no experimental counterpart to this study is available, the conclusions mainly aim at knowing the possible numerical bias rather than commenting on the predictivity of the approach.


Author(s):  
Jörg Schlüter ◽  
Thilo Schönfeld ◽  
Thierry Poinsot ◽  
Werner Krebs ◽  
Stefan Hoffmann

Since the flame of high intense low NOx gas turbine combustion systems is stabilized by swirl, the analysis of the swirl flow is very crucial to the design and optimization of such combustion systems. Although a huge amount of publications have been provided on this field just a few have used Large Eddy Simulation due to limits in computer resources. Using Large Eddy Simulation the large vortical structure of the flow is resolved leading to a much better insight of the flow features. Hence, in this paper the Large Eddy Simulation has been applied to investigate the non reacting confined swirling flow downstream of a gas turbine burner. A high accuracy of the prediction of the full three dimensional simulation could be pointed out by comparison of the computational results to measurements. Further the large vortical structure and the dynamic behavior of the flow has been analyzed. The formation of a precessing vortex core is visualized. Due to the precessing motion of the central recirculation zone an alternate vortex shedding at the edges of the burner nozzle is induced. From LES Strouhal numbers for the vortex shedding process are calculated which are confirmed by hot wire measurements.


2007 ◽  
Vol 78 (3) ◽  
pp. 035114 ◽  
Author(s):  
Timothy C. Williams ◽  
Robert W. Schefer ◽  
Joseph C. Oefelein ◽  
Christopher R. Shaddix

Sign in / Sign up

Export Citation Format

Share Document