Invariant analysis of the Reynolds stress tensor for a nuclear fuel assembly with spacer grid and split type vanes

2019 ◽  
Vol 77 ◽  
pp. 144-156 ◽  
Author(s):  
Giacomo Busco ◽  
Elia Merzari ◽  
Yassin A. Hassan
2010 ◽  
Vol 34 (9) ◽  
pp. 1175-1183 ◽  
Author(s):  
Kee-Nam Song ◽  
Sang-Hoon Lee ◽  
Soo-Bum Lee ◽  
Jae-Jun Lee ◽  
Gyung-Jin Park

Author(s):  
Youngik Yoo ◽  
Joongjin Kim ◽  
Kyongbo Eom ◽  
Hyeongkoo Kim

Abstract The purpose of this study is to develop a finite element model that accurately describes the buckling behavior of a spacer grid. The spacer grid is the most important component of a nuclear fuel assembly and supports the fuel rod with a structurally sufficient buckling strength. Therefore, the development of a reliable spacer grid model is essential to evaluate the mechanical integrity of a nuclear fuel assembly. To achieve this objective, a three-dimensional finite element model was proposed to simulate the buckling characteristics and mechanical behavior of a PWR spacer grid. To simulate the exact mechanical properties of the spacer grid cell, the parameter values required for the model were determined by conducting a fuel rod drag test and spacer grid spring/dimple stiffness test. Finally, a spacer grid static compression test and dynamic impact test were performed according to the gap size of the spacer grid cell, and the model was verified by comparing the test and analysis results. The results obtained using the developed spacer grid finite element model agreed well with the mechanical test results, and it was confirmed that both the buckling characteristics and mechanical behaviors of the model were accurately simulated by the proposed model.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1228-1234 ◽  
Author(s):  
KEE-NAM SONG ◽  
SANG-HOON LEE ◽  
SOO-BUM LEE

A spacer grid assembly is one of the main structural components of the nuclear fuel assembly for a Pressurized light Water Reactor (PWR). The spacer grid assembly supports and aligns the fuel rods, guides the fuel assemblies past each other during a handling and, if needed, sustains lateral seismic loads. The ability of a spacer grid assembly to resist these lateral loads is usually characterized in terms of its dynamic and static crush strengths, which are acquired from tests. In this study, a finite element analysis on the dynamic crush strength of spacer grid assembly specimens is carried out. Comparisons show that the analysis results are in good agreement with the test results to within about a 30 % difference range. Therefore, we could predict the crush strength of a spacer grid assembly in advance, before performing a dynamic crush test. And also a parametric study on the crush strength of a spacer grid assembly is carried out by adjusting the weld penetration depth for a sub-sized spacer grid, which also shows a good agreement between the test and analysis results.


2007 ◽  
Vol 353-358 ◽  
pp. 2668-2671
Author(s):  
Kee Nam Song ◽  
Sang Hoon Lee ◽  
Jae Yong Kim

A spacer grid assembly is one of the main structural components of the nuclear fuel assembly of a Pressurized light Water Reactor (PWR). The spacer grid assembly supports and aligns the fuel rods, guides the fuel assemblies past each other during a handling and, if needed, sustains lateral seismic loads. The ability of a spacer grid assembly to resist these lateral loads is usually characterized in terms of its dynamic and static crush strengths, which are acquired from tests. In this study, a finite element analysis on the dynamic crush strength of spacer grid assembly specimens is carried out. Comparisons show that the analysis results are in good agreement with the test results within an 8 % difference range. Therefore, we could predict the crush strength of a spacer grid assembly in advance, before performing the dynamic buckling test. And also a parametric study on the crush strength of a spacer grid assembly is carried out by adjusting the weld penetration depth for a sub-sized spacer grid, which also shows a good agreement between the test and analysis results.


Author(s):  
Jean-François Monier ◽  
Nicolas Poujol ◽  
Mathieu Laurent ◽  
Feng Gao ◽  
Jérôme Boudet ◽  
...  

The present study aims at analysing the Boussinesq constitutive relation validity in a corner separation flow of a compressor cascade. The Boussinesq constitutive relation is commonly used in Reynolds-averaged Navier-Stokes (RANS) simulations for turbomachinery design. It assumes an alignment between the Reynolds stress tensor and the zero-trace mean strain-rate tensor. An indicator that measures the alignment between these tensors is used to test the validity of this assumption in a high fidelity large-eddy simulation. Eddy-viscosities are also computed using the LES database and compared. A large-eddy simulation (LES) of a LMFA-NACA65 compressor cascade, in which a corner separation is present, is considered as reference. With LES, both the Reynolds stress tensor and the mean strain-rate tensor are known, which allows the construction of the indicator and the eddy-viscosities. Two constitutive relations are evaluated. The first one is the Boussinesq constitutive relation, while the second one is the quadratic constitutive relation (QCR), expected to render more anisotropy, thus to present a better alignment between the tensors. The Boussinesq constitutive relation is rarely valid, but the QCR tends to improve the alignment. The improvement is mainly present at the inlet, upstream of the corner separation. At the outlet, the correction is milder. The eddy-viscosity built with the LES results are of the same order of magnitude as those built as the ratio of the turbulent kinetic energy k and the turbulence specific dissipation rate ω. They also show that the main impact of the QCR is to rotate the mean strain-rate tensor in order to realign it with the Reynolds stress tensor, without dilating it.


Sign in / Sign up

Export Citation Format

Share Document