Bifurcation and stability of forced convection in curved ducts of square cross-section

2004 ◽  
Vol 47 (14-16) ◽  
pp. 2971-2987 ◽  
Author(s):  
Liqiu Wang ◽  
Tianliang Yang
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Oktay Çiçek ◽  
A. Cihat Baytaş

Purpose The purpose of this study is to numerically investigate heat transfer and entropy generation between airframe and cabin-cargo departments in an aircraft. The conjugate forced convection and entropy generation in a cylindrical cavity within air channel partly filled with porous insulation material as simplified geometry for airframe and cabin-cargo departments are considered under local thermal non-equilibrium condition. Design/methodology/approach The non-dimensional governing equations for fluid and porous media discretized by finite volume method are solved using the SIMPLE algorithm with pressure and velocity correction. Findings The effects of the following parameters on the problem are investigated; Reynolds number, Darcy number, the size of inlet and exit cross-section, thermal conductivity ratio for solid and fluid phases, angle between the vertical symmetry axis and the end of channel wall exit and the gap between adiabatic channel wall and horizontal adiabatic wall separating cabin and cargo sections. Originality/value This paper can provide a basic perspective and framework for thermal design between the fuselage and cabin-cargo sections. The minimum total entropy generation number is calculated for various Reynolds numbers and thermal conductivity ratios. It is observed that the channel wall temperature increases for high Reynolds number, low Darcy number, narrower exit cross-section and wider the gap between channel wall and horizontal.


2005 ◽  
Vol 128 (6) ◽  
pp. 596-600 ◽  
Author(s):  
Kamel Hooman ◽  
Ali A. Merrikh

A theoretical analysis is presented to investigate thermally and hydrodynamically fully developed forced convection in a duct of rectangular cross section filled with a hyper-porous medium. The Darcy-Brinkman model was adopted in the present analysis. A Fourier series type solution is applied to obtain the exact velocity and temperature distribution within the duct. The case of uniform heat flux on the walls, i.e., the H boundary condition in the terminology of Kays and Crawford (1993, Convective Heat and Mass Transfer, 3rd ed., McGraw-Hill, NY), is treated. Values of the Nusselt number and the friction factor as a function of the aspect ratio, the Darcy number, and the viscosity ratio are reported.


Sign in / Sign up

Export Citation Format

Share Document