Shape optimization of three-dimensional channel roughened by angled ribs with RANS analysis of turbulent heat transfer

2006 ◽  
Vol 49 (21-22) ◽  
pp. 4013-4022 ◽  
Author(s):  
Hong-Min Kim ◽  
Kwang-Yong Kim
Author(s):  
Prasad Vegendla ◽  
Rui Hu

Abstract This paper discusses the modeling and simulations of deteriorated turbulent heat transfer (DTHT) for a wall-heated fluid flows, which can be observed in gas-cooled nuclear power reactors during pressurized conduction cooldown (PCC) event due to loss of force circulation flow. The DTHT regime is defined as the deterioration of normal turbulent heat transport due to increase of acceleration and buoyancy forces. The computational fluid dynamics (CFD) tools such as Nek5000 and STAR-CCM+ can help to analyze the DTHT phenomena in reactors for efficient thermal-fluid designs. Three-dimensional (3D) CFD nonisothermal modeling and simulations were performed in a wall-heated circular tube. The simulation results were validated with two different CFD tools, Nek5000 and STAR-CCM+, and validated with an experimental data. The predicted bulk temperatures were identical in both CFD tools, as expected. Good agreement between simulated results and measured data were obtained for wall temperatures along the tube axis using Nek5000. In STAR-CCM+, the under-predicted wall temperatures were mainly due to higher turbulence in the wall region. In STAR-CCM+, the predicted DTHT was over 48% at outlet when compared to inlet heat transfer values.


Author(s):  
Jenn-Jiang Hwang ◽  
Wei-Jyh Wang ◽  
Dong-Yuo Lai

Three-dimensional turbulent fluid flow and heat transfer characteristics are analyzed numerically for fluids flowing through a rotating periodical two-pass square channel. The two-pass channel is characterized by three parts: (1) a radial-inward straight channel, (2) 180-deg sharp turns, and (3) a radial-outward straight channel. The smooth walls of the two-pass channel are subject to a constant heat flux. A two-equation k-ε turbulence model with modified terms for Coriolis and rotational buoyancy is employed to resolve this elliptic problem. The effects of rotational buoyancy are examined and discussed. It is found that adjacent the 180-deg turn, the rotational buoyancy effect on the local heat transfer is nearly negligible due to the relatively strong entrance effect of 180-deg turns. Downstream the entrance length, the changes in local heat transfer due to the rotational buoyancy in the radially outward flow are more significant than those in the radially inward flow. However, the channel averaged heat transfer is affected slightly by the rotational buoyancy. Whenever the buoyancy effects are sufficiently strong, the flow reversal appears over the leading face of the radial outward flow channel. A comparison of the present numerical results with the available experimental data by taking buoyancy into consideration is also presented.


2020 ◽  
Vol 14 (1) ◽  
pp. 6344-6361
Author(s):  
Pankaj Srivastava ◽  
Anupam Dewan

This paper presents the effects of microchannel shape with ribs and cavities on turbulent heat transfer. Three-dimensional conjugate heat transfer using the SST k-ω turbulence model has been investigated for four different microchannels, namely, rectangular, rectangular with ribs and cavities, convergent-divergent (CD) and convergent-divergent with Ribs and Cavities (CD-RC). The flow field, pressure and temperature distributions and friction factor are analyzed, and thermal resistance and average Nusselt number are compared. The thermal performance of the CD-RC microchannel is found to be better than that of other microchannels considered in terms of an average Nusselt number increased from 16% to 40%. Heat transfer increases due to a strong fluid mixing and periodic interruption of boundary-layer. It is observed that with an increase in Reynolds number (Re), the thermal resitance drops rapidly. The thermal resistance of the CD-RC microchannel is decreased by 30% than that of the rectangular microchannel for Re ranging from 2500 to 7000. However, such design of microchannel loses its heat transfer effectiveness due to a high pumping power at high values of Re.


Author(s):  
Hong-Min Kim ◽  
Kwang-Yong Kim

A numerical optimization procedure for the shape of three-dimensional channel with angled ribs mounted on one of the walls to enhance turbulent heat transfer is presented. The response surface based global optimization with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer is used. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for local heat transfer rate show a reasonable agreement with the experimental data. The pitch-to-height ratio of the rib and rib height-to-channel height ratio are set to be 9.0 and 0.1, respectively, and width-to-rib height ratio and attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related terms with the weighting factor. Full-factorial experimental design method is used to determine the data points. Optimum shapes of the channel have been obtained in the range from 0.0 to 0.1 of the weighting factor.


Sign in / Sign up

Export Citation Format

Share Document