scholarly journals A study of turbulent heat transfer in convergent-divergent shaped microchannel with ribs and cavities using CFD

2020 ◽  
Vol 14 (1) ◽  
pp. 6344-6361
Author(s):  
Pankaj Srivastava ◽  
Anupam Dewan

This paper presents the effects of microchannel shape with ribs and cavities on turbulent heat transfer. Three-dimensional conjugate heat transfer using the SST k-ω turbulence model has been investigated for four different microchannels, namely, rectangular, rectangular with ribs and cavities, convergent-divergent (CD) and convergent-divergent with Ribs and Cavities (CD-RC). The flow field, pressure and temperature distributions and friction factor are analyzed, and thermal resistance and average Nusselt number are compared. The thermal performance of the CD-RC microchannel is found to be better than that of other microchannels considered in terms of an average Nusselt number increased from 16% to 40%. Heat transfer increases due to a strong fluid mixing and periodic interruption of boundary-layer. It is observed that with an increase in Reynolds number (Re), the thermal resitance drops rapidly. The thermal resistance of the CD-RC microchannel is decreased by 30% than that of the rectangular microchannel for Re ranging from 2500 to 7000. However, such design of microchannel loses its heat transfer effectiveness due to a high pumping power at high values of Re.

2015 ◽  
Vol 19 (1) ◽  
pp. 141-154 ◽  
Author(s):  
Yacine Halouane ◽  
Amina Mataoui ◽  
Farida Iachachene

Convective heat transfer from an isothermal hot cylindrical cavity due to a turbulent round jet impingement is investigated numerically. Three-dimensional turbulent flow is considered in this work. The Reynolds stress second order turbulence model with wall standard treatment is used for the turbulence predictions the problem parameters are the jet exit Reynolds number, ranging from 2x104 to 105and the normalized impinging distance to the cavity bottom and the jet exit Lf, ranging from 4 to 35. The computed flow patterns and isotherms for various combinations of these parameters are analyzed in order to understand the effect of the cavity confinement on the heat transfer phenomena. The flow in the cavity is divided into three parts, the area of free jet, and the area of the jet interaction with the reverse flow and the semi-quiescent flow in the region of the cavity bottom. The distribution of the local and mean Nusselt numbers along the cavity walls for above combinations of the flow parameters are detailed. Results are compared against to corresponding cases for impinging jet on a plate for the case of the bottom wall. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number. Finally, it was found that the average Nusselt number at the stagnation point could be correlated by a relationship in the form Nu=f(Lf,Re).


1994 ◽  
Vol 116 (3) ◽  
pp. 577-587 ◽  
Author(s):  
S. H. Kim ◽  
N. K. Anand

Two-dimensional turbulent heat transfer between a series of parallel plates with surface mounted discrete block heat sources was studied numerically. The computational domain was subjected to periodic conditions in the streamwise direction and repeated conditions in the cross-stream direction (Double Cyclic). The second source term was included in the energy equation to facilitate the correct prediction of a periodically fully developed temperature field. These channels resemble cooling passages in electronic equipment. The k–ε model was used for turbulent closure and calculations were made for a wide range of independent parameters (Re, Ks/Kf, s/w, d/w, and h/w). The governing equations were solved by using a finite volume technique. The numerical procedure and implementation of the k–ε model was validated by comparing numerical predictions with published experimental data (Wirtz and Chen, 1991; Sparrow et al., 1982) for a single channel with several surface mounted blocks. Computations were performed for a wide range of Reynolds numbers (5 × 104–4 × 105) and geometric parameters and for Pr = 0.7. Substrate conduction was found to reduce the block temperature by redistributing the heat flux and to reduce the overall thermal resistance of the module. It was also found that the increase in the Reynolds number decreased the thermal resistance. The study showed that the substrate conduction can be an important parameter in the design and analysis of cooling channels of electronic equipment. Finally, correlations for the friction factor (f) and average thermal resistance (R) in terms of independent parameters were developed.


2003 ◽  
Vol 125 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Chang-Yuan Liu ◽  
Ying-Huei Hung

Both experimental and theoretical investigations on the heat transfer and flow friction characteristics of compact cold plates have been performed. From the results, the local and average temperature rises on the cold plate surface increase with increasing chip heat flux or decreasing air mass flow rate. Besides, the effect of chip heat flux on the thermal resistance of cold plate is insignificant; while the thermal resistance of cold plate decreases with increasing air mass flow rate. Three empirical correlations of thermal resistance in terms of air mass flow rate with a power of −0.228 are presented. As for average Nusselt number, the effect of chip heat flux on the average Nusselt number is insignificant; while the average Nusselt number of the cold plate increases with increasing Reynolds number. An empirical relationship between Nu¯cp and Re can be correlated. In the flow frictional aspect, the overall pressure drop of the cold plate increases with increasing air mass flow rate; while it is insignificantly affected by chip heat flux. An empirical correlation of the overall pressure drop in terms of air mass flow rate with a power of 1.265 is presented. Finally, both heat transfer performance factor “j” and pumping power factor “f” decrease with increasing Reynolds number in a power of 0.805; while they are independent of chip heat flux. The Colburn analogy can be adequately employed in the study.


Author(s):  
Prasad Vegendla ◽  
Rui Hu

Abstract This paper discusses the modeling and simulations of deteriorated turbulent heat transfer (DTHT) for a wall-heated fluid flows, which can be observed in gas-cooled nuclear power reactors during pressurized conduction cooldown (PCC) event due to loss of force circulation flow. The DTHT regime is defined as the deterioration of normal turbulent heat transport due to increase of acceleration and buoyancy forces. The computational fluid dynamics (CFD) tools such as Nek5000 and STAR-CCM+ can help to analyze the DTHT phenomena in reactors for efficient thermal-fluid designs. Three-dimensional (3D) CFD nonisothermal modeling and simulations were performed in a wall-heated circular tube. The simulation results were validated with two different CFD tools, Nek5000 and STAR-CCM+, and validated with an experimental data. The predicted bulk temperatures were identical in both CFD tools, as expected. Good agreement between simulated results and measured data were obtained for wall temperatures along the tube axis using Nek5000. In STAR-CCM+, the under-predicted wall temperatures were mainly due to higher turbulence in the wall region. In STAR-CCM+, the predicted DTHT was over 48% at outlet when compared to inlet heat transfer values.


Author(s):  
Marcelo Assato ◽  
Marcelo J. S. de Lemos

This work presents numerical results for heat transfer in turbulent flow past a backward-facing step. It is shown that nonlinear k-ε models perform better than their linear counterparts when simulations are compared with experimental values. Wall functions are used for simplicity of the simulations. The finite-volume technique is employed for discretizing the transport equation set on a non-orthogonal grid system. The SIMPLE method is used for correcting the pressure field. Results for the reattachment length using the non-linear model are closer to the experimental values when compared with similar calculations using the standard linear closure.


2013 ◽  
Vol 805-806 ◽  
pp. 1817-1822 ◽  
Author(s):  
Zhang Jun Wang ◽  
Zhuo Xiong Zeng ◽  
Yi Hua Xu

Three-dimensional numerical study is performed for heat transfer and resistance characteristics as well as comprehensive performance of two kinds H-type (single and double) finned tube. It is found that the heat transfer and resistance characteristics as well as comprehensive performance of H-type finned tube are influenced by the Reynolds number of gas. With the growth of Reynolds number, the air-side Nusselt number rises gradually and the heat transfer performance gets better and better, whereas the air-side Euler number drops step by step until close to a fixed value. The comprehensive performances of both single H-type finned tube and double ones are weaken progressively. When Reynolds number value is same, the convective heat transfer, pressure drop, air-side Nusselt number and Euler number of single H-type finned tube are bigger than those of double ones. The single H-type finned tube expression is much better than double ones in comprehensive performance and heat transfer.


Author(s):  
Jenn-Jiang Hwang ◽  
Wei-Jyh Wang ◽  
Dong-Yuo Lai

Three-dimensional turbulent fluid flow and heat transfer characteristics are analyzed numerically for fluids flowing through a rotating periodical two-pass square channel. The two-pass channel is characterized by three parts: (1) a radial-inward straight channel, (2) 180-deg sharp turns, and (3) a radial-outward straight channel. The smooth walls of the two-pass channel are subject to a constant heat flux. A two-equation k-ε turbulence model with modified terms for Coriolis and rotational buoyancy is employed to resolve this elliptic problem. The effects of rotational buoyancy are examined and discussed. It is found that adjacent the 180-deg turn, the rotational buoyancy effect on the local heat transfer is nearly negligible due to the relatively strong entrance effect of 180-deg turns. Downstream the entrance length, the changes in local heat transfer due to the rotational buoyancy in the radially outward flow are more significant than those in the radially inward flow. However, the channel averaged heat transfer is affected slightly by the rotational buoyancy. Whenever the buoyancy effects are sufficiently strong, the flow reversal appears over the leading face of the radial outward flow channel. A comparison of the present numerical results with the available experimental data by taking buoyancy into consideration is also presented.


2001 ◽  
Author(s):  
I. V. Shevchuk

Abstract All known analytical solutions of the integral equation of the turbulent thermal boundary layer for a rotating disk have been obtained for the case of direct problem. This means finding the Nusselt number at a given distribution of the wall temperature. This distribution is described by power law and is monotone (derivative of wall temperature with respect to the radial coordinate does not change its sign). Outlined in this paper is an analytical form of non-monotone distribution of the wall temperature, which provided a new analytical solution for the turbulent Nusselt number including earlier known equations as a specific particular case. The solution is based on the integral method, which proved to be more precise than known Dorfman’s approach. Chosen for validation of the proposed method were turbulent heat transfer experiments of Northrop and Owen (1988). Predictions presented include analytical studies using inverse and direct problem solutions as well as numerical simulations using polynomial approximations of the experimental wall temperature distributions.


Author(s):  
Majid Molki

Turbulent heat transfer for flow of water-air mixture driven by moving walls in a cubical heat sink is investigated. One wall is maintained at an elevated temperature, while the vertical walls are at a low temperature. The cubical enclosure functions as a heat sink using water-air mixture with no phase change. Different arrangements for wall motion are considered, which include 1 to 4 moving walls. As the number of moving walls increases, the flow and heat transfer become more complex. In general, the flow reveals complex and multi-scale structures with an unsteady and evolving nature. The larger structure of the flow is resolved using Large Eddy Simulation, while the sub-grid scales are captured by the dynamic k-equation eddy-viscosity model. The focus of this work is on thermal field and heat transfer as affected by the complex flow field generated by multiple moving walls. The results indicate that the Nusselt number for the heat sink varies from 5202.8 to 7356.1, depending on the number of moving walls. Contours of fluid temperature, liquid volume fraction, local and average values of Nusselt number are among the results presented in this paper.


1992 ◽  
Vol 114 (2) ◽  
pp. 362-372 ◽  
Author(s):  
J. H. Lienhard ◽  
X. Liu ◽  
L. A. Gabour

Splattering and heat transfer due to impingement of an unsubmerged, fully turbulent liquid jet is investigated experimentally and analytically. Heat transfer measurements were made along a uniformly heated surface onto which a jet impacted, and a Phase Doppler Particle Analyzer was used to measure the size, velocity, and concentration of the droplets splattered after impingement. Splattering is found to occur in proportion to the magnitude of surface disturbances to the incoming jet, and it is observed to occur only within a certain radial range, rather than along the entire film surface. A nondimensional group developed from inviscid capillary disturbance analysis of the circular jet successfully scales the splattering data, yielding predictive results for the onset of splattering and for the mass splattered. A momentum integral analysis incorporating the splattering results is used to formulate a prediction of local Nusselt number. Both the prediction and the experimental data reveal that the Nusselt number is enhanced for radial locations immediately following splattering, but falls below the nonsplattering Nusselt number at larger radii. The turbulent heat transfer enhancement upstream of splattering is also characterized.


Sign in / Sign up

Export Citation Format

Share Document