A steady state model and maximum heat transport capacity of an electrohydrodynamically augmented micro-grooved heat pipe

2006 ◽  
Vol 49 (21-22) ◽  
pp. 3957-3967 ◽  
Author(s):  
Balram Suman
2011 ◽  
Vol 483 ◽  
pp. 350-353
Author(s):  
Tian Han ◽  
Xiao Wei Liu ◽  
Ning Cui

In this paper, a kind of one-dimensional steady-state model is used to analyze and simulate the capillary motion of the working material in micro heat pipe. The character of this model is that it includes the influence of the interface friction, and the influence of the friction to the micro heat pipe’s performance is also simulated and analyzed. The maximum heat transport capacity and the optimizing size of the grooves are calculated by this model. Some experiments have been carried out to evaluate the simulation results.


1990 ◽  
Vol 112 (3) ◽  
pp. 595-601 ◽  
Author(s):  
B. R. Babin ◽  
G. P. Peterson ◽  
D. Wu

A combined experimental and analytical investigation was conducted to identify and understand better the phenomena that govern the performance limitations and operating characteristics of micro heat pipes—heat pipes so small that the mean curvature of the vapor—liquid interface is comparable in magnitude to the reciprocal of the hydraulic radius of the flow channel. The analytical portion of the investigation began with the development of a steady-state model in which the effects of the extremely small characteristic dimensions on the conventional steady-state heat pipe modeling techniques were examined. In the experimental portion of the investigation, two micro heat pipes, one copper and one silver, 1 mm2 in cross-sectional area and 57 mm in length, were evaluated experimentally to determine the accuracy of the steady-state model and to provide verification of the micro heat pipe concept. Tests were conducted in a vacuum environment to eliminate conduction and convection losses. The steady-state experimental results obtained were compared with the analytical model and were found to predict accurately the experimentally determined maximum heat transport capacity for an operating temperature range of 40° C to 60° C. A detailed description of the methodology used in the development of the steady-state model along with a comparison of the predicted and experimental results are presented.


1998 ◽  
Vol 120 (4) ◽  
pp. 1064-1071 ◽  
Author(s):  
J. M. Ha ◽  
G. P. Peterson

The original analytical model for predicting the maximum heat transport capacity in micro heat pipes, as developed by Cotter, has been re-evaluated in light of the currently available experimental data. As is the case for most models, the original model assumed a fixed evaporator region and while it yields trends that are consistent with the experimental results, it significantly overpredicts the maximum heat transport capacity. In an effort to provide a more accurate predictive tool, a semi-empirical correlation has been developed. This modified model incorporates the effects of the temporal intrusion of the evaporating region into the adiabatic section of the heat pipe, which occurs as the heat pipe approaches dryout conditions. In so doing, the current model provides a more realistic picture of the actual physical situation. In addition to incorporating these effects, Cotter’s original expression for the liquid flow shape factor has been modified. These modifications are then incorporated into the original model and the results compared with the available experimental data. The results of this comparison indicate that the new semiempirical model significantly improves the correlation between the experimental and predicted results and more accurately represents the actual physical behavior of these devices.


1988 ◽  
Vol 64 (2) ◽  
pp. 860-868 ◽  
Author(s):  
P. C. Withers ◽  
S. S. Hillman

A steady-state model, incorporating pulmonary ventilation, pulmonary diffusion capacity, cardiovascular transport capacity, and tissue diffusion capacity, was developed to describe the maximal O2 and CO2 transport capacity for an anuran amphibian (Bufo). Solution of the model by iterative calculation closely predicted 1) the empirical maximal O2 consumption (VO2max) for Bufo, 2) variation in empirical VO2max for three other genera (Rana, Xenopus, Scaphiopus), and the empirically observed effects on VO2max of 3) hypobaric hypoxia, 4) artificially induced anemia, and 5) beta-blockade of heart rate increment with activity. The model indicates that cardiovascular transport is the rate-limiting step to VO2max in amphibians and that an increase in circulatory O2 transport is a major physiological adaptation for increasing total aerobic capacity. CO2 transport and body fluid PCO2 values were primarily determined by pulmonary ventilatory capacity, and to a lesser extent by cardiovascular transport. The model should be generally applicable to other terrestrial vertebrates.


2005 ◽  
Vol 127 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Yaxiong Wang ◽  
G. P. Peterson

A novel flat heat pipe has been developed to assist in meeting the high thermal design requirements in high power microelectronics, power converting systems, laptop computers and spacecraft thermal control systems. Two different prototypes, each measuring 152.4 mm by 25.4 mm were constructed and evaluated experimentally. Sintered copper screen mesh was used as the primary wicking structure, in conjunction with a series of parallel wires, which formed liquid arteries. Water was selected as the working fluid. Both experimental and analytical investigations were conducted to examine the maximum heat transport capacity and optimize the design parameters of this particular design. The experimental results indicated that the maximum heat transport capacity and heat flux for Prototype 1, which utilized four layers of 100 mesh screen were 112 W and 17.4W/cm2, respectively, in the horizontal position. For Prototype 2, which utilized six layers of 150 mesh screen, these values were 123 W and 19.1W/cm2, respectively. The experimental results were in good agreement with the theoretical predictions for a mesh compact coefficient of C=1.15.


2001 ◽  
Author(s):  
Y. X. Wang ◽  
G. P. Peterson

Abstract A flexible micro heat pipe radiator, fabricated by sintering an array of aluminum wires between two thin aluminum sheets, was developed as part of a program to conceptulize, develop, and test lightweight, flexible radiator fin structures for use on long-term spacecraft missions. A detailed experimental investigation was conducted to determine the temperature distribution, maximum heat transport capacity, and radiation efficiency of these micro heat pipe radiators in a radiation environment. Experimental results from three Aluminum-Acetone micro heat pipe radiators with wire diameters of 0.635 mm, 0.813 and 1.016 mm are presented, evaluated and discussed. The results of the experimental program indicted that the maximum heat transport capacity and radiation efficiency, both increased with increasing wire diameter. The maximum heat transport capacity of the micro heat pipe radiator utilizing a wire diameter of 0.635 mm was 15.2 W. The radiators utilizing wire diameters of 0.813 mm and 1.016 mm never reached the maximum heat transport capacities for the given test conditions. In the tests, temperature distributions were recorded for several sink temperatures and indicated that as the sink temperature decreased the radiation efficiency decreased for a given heat input. The maximum heat transport capacity increased with increasing evaporating temperature for the micro heat pipe radiator utilizing a wire diameter of 0.635 mm. Comparison of micro heat pipe radiators with and without working fluid, indicated that significant improvements in temperature uniformity and radiation efficiencies could be obtained, especially at high heat fluxes. A maximum radiation efficiency of 0.95 was observed. In general, while some variation in performance was observed, all three micro heat pipe radiators were found to be capable of meeting the thermal requirements of long-term missions.


1996 ◽  
Vol 118 (3) ◽  
pp. 731-739 ◽  
Author(s):  
G. P. Peterson ◽  
H. B. Ma

A mathematical model for predicting the minimum meniscus radius and the maximum heat transport in triangular grooves is presented. In this model, a method for determining the theoretical minimum meniscus radius was developed and used to calculate the capillary heat transport limit based on the physical characteristics and geometry of the capillary grooves. A control volume technique was employed to determine the flow characteristics of the micro heat pipe, in an effort to incorporate the size and shape of the grooves and the effects of the frictional liquid–vapor interaction. In order to compare the heat transport and flow characteristics, a hydraulic diameter, which incorporated these effects, was defined and the resulting model was solved numerically. The results indicate that the heat transport capacity of micro heat pipes is strongly dependent on the apex channel angle of the liquid arteries, the contact angle of the liquid flow, the length of the heat pipe, the vapor flow velocity and characteristics, and the tilt angle. The analysis presented here provides a mechanism whereby the groove geometry can be optimized with respect to these parameters in order to obtain the maximum heat transport capacity for micro heat pipes utilizing axial grooves as the capillary structure.


Sign in / Sign up

Export Citation Format

Share Document