An exact analytical solution for two-dimensional, unsteady, multilayer heat conduction in spherical coordinates

2010 ◽  
Vol 53 (9-10) ◽  
pp. 2133-2142 ◽  
Author(s):  
Prashant K. Jain ◽  
Suneet Singh ◽  
Rizwan-uddin
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Nemat Dalir

An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere. The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An arbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthal directions. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radial direction. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed.


2015 ◽  
Vol 137 (10) ◽  
Author(s):  
A. Amiri Delouei ◽  
M. Norouzi

The current study presents an exact analytical solution for unsteady conductive heat transfer in multilayer spherical fiber-reinforced composite laminates. The orthotropic heat conduction equation in spherical coordinate is introduced. The most generalized linear boundary conditions consisting of the conduction, convection, and radiation heat transfer is considered both inside and outside of spherical laminate. The fibers' angle and composite material in each lamina can be changed. Laplace transformation is employed to change the domain of the solutions from time into the frequency. In the frequency domain, the separation of variable method is used and the set of equations related to the coefficients of Fourier–Legendre series is solved. Meromorphic function technique is utilized to determine the complex inverse Laplace transformation. Two functional cases are presented to investigate the capability of current solution for solving the industrial unsteady problems in different arrangements of multilayer spherical laminates.


2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Suneet Singh ◽  
Prashant K. Jain ◽  
Rizwan-uddin

An analytical solution has been obtained for the transient problem of three-dimensional multilayer heat conduction in a sphere with layers in the radial direction. The solution procedure can be applied to a hollow sphere or a solid sphere composed of several layers of various materials. In general, the separation of variables applied to 3D spherical coordinates has unique characteristics due to the presence of associated Legendre functions as the eigenfunctions. Moreover, an eigenvalue problem in the azimuthal direction also requires solution; again, its properties are unique owing to periodicity in the azimuthal direction. Therefore, extending existing solutions in 2D spherical coordinates to 3D spherical coordinates is not straightforward. In a spherical coordinate system, one can solve a 3D transient multilayer heat conduction problem without the presence of imaginary eigenvalues. A 2D cylindrical polar coordinate system is the only other case in which such multidimensional problems can be solved without the use of imaginary eigenvalues. The absence of imaginary eigenvalues renders the solution methodology significantly more useful for practical applications. The methodology described can be used for all the three types of boundary conditions in the outer and inner surfaces of the sphere. The solution procedure is demonstrated on an illustrative problem for which results are obtained.


Sign in / Sign up

Export Citation Format

Share Document