Analytical Solution for Three-Dimensional, Unsteady Heat Conduction in a Multilayer Sphere

2016 ◽  
Vol 138 (10) ◽  
Author(s):  
Suneet Singh ◽  
Prashant K. Jain ◽  
Rizwan-uddin

An analytical solution has been obtained for the transient problem of three-dimensional multilayer heat conduction in a sphere with layers in the radial direction. The solution procedure can be applied to a hollow sphere or a solid sphere composed of several layers of various materials. In general, the separation of variables applied to 3D spherical coordinates has unique characteristics due to the presence of associated Legendre functions as the eigenfunctions. Moreover, an eigenvalue problem in the azimuthal direction also requires solution; again, its properties are unique owing to periodicity in the azimuthal direction. Therefore, extending existing solutions in 2D spherical coordinates to 3D spherical coordinates is not straightforward. In a spherical coordinate system, one can solve a 3D transient multilayer heat conduction problem without the presence of imaginary eigenvalues. A 2D cylindrical polar coordinate system is the only other case in which such multidimensional problems can be solved without the use of imaginary eigenvalues. The absence of imaginary eigenvalues renders the solution methodology significantly more useful for practical applications. The methodology described can be used for all the three types of boundary conditions in the outer and inner surfaces of the sphere. The solution procedure is demonstrated on an illustrative problem for which results are obtained.

1986 ◽  
Vol 53 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Nihal Somaratna ◽  
T. C. T. Ting

This study examines analytically the possible existence of stress singularities of the form σ = ρδf(θ,φ) at the apex of axisymmetric conical boundaries in transversely isotropic materials. (ρ, θ, φ) refer to spherical coordinates with the origin at the apex. The problems of one conical boundary and of two conical boundaries with a common apex are considered. The boundaries are either rigidly clamped or traction free. Separation of variables enables the general solution to be expressed in terms of Legendre functions of the first and second kind. Imposition of boundary conditions leads to an eigenequation that would determine possible values of δ. The degenerate case that arises when the eigenvalues of the elasiticity constants are identical is also discussed. Isotropic materials constitute only a particular case in this class of degenerate materials and previously reported eigenequations corresponding to isotropic materials are shown to be recoverable from the present results. Numerical results corresponding to a few selected cases are also presented to illustrate the solution procedure.


Author(s):  
Heather Johnston ◽  
Colleen Dewis ◽  
John Kozey

Objective The objectives were to compare cylindrical and spherical coordinate representations of the maximum reach envelope (MRE) and apply these to a comparison of age and load on the MRE. Background The MRE is a useful measurement in the design of workstations and quantifying functional capability of the upper body. As a dynamic measure, there are human factors that impact the size, shape, and boundaries of the MRE. Method Three-dimensional reach measures were recorded using a computerized potentiometric system for anthropometric measures (CPSAM) on two adult groups (aged 18–25 years and 35–70 years). Reach trials were performed holding .0, .5, and 1 kg. Results Three-dimensional Cartesian coordinates were transformed into cylindrical ( r, θ , Z) and spherical ( r, θ, ϕ) coordinates. Median reach distance vectors were calculated for 54 panels within the MRE as created by incremented banding of the respective coordinate systems. Reach distance and reach area were compared between the two groups and the loaded conditions using a spherical coordinate system. Both younger adults and unloaded condition produced greater reach distances and reach areas. Conclusions Where a cylindrical coordinate system may reflect absolute reference for design, a normalized spherical coordinate system may better reflect functional range of motion and better compare individual and group differences. Age and load are both factors that impact the MRE. Application These findings present measurement considerations for use in human reach investigation and design.


2019 ◽  
Vol 34 (29) ◽  
pp. 1950177
Author(s):  
Won Sang Chung ◽  
Hassan Hassanabadi

In this paper, we extend the theory of the [Formula: see text]-deformed quantum mechanics in one dimension[Formula: see text] into three-dimensional case. We relate the [Formula: see text]-deformed quantum theory to the quantum theory in a curved space. We discuss the diagonal metric based on [Formula: see text]-addition in the Cartesian coordinate system and core radius of neutron star. We also discuss the diagonal metric based on [Formula: see text]-addition in the spherical coordinate system and [Formula: see text]-deformed Heisenberg atom model.


1994 ◽  
Vol 31 (2) ◽  
pp. 303-308 ◽  
Author(s):  
V. Silvestri ◽  
C. Tabib

This technical note describes the analysis of the strain field around a simple pile. The analytical solution is obtained by using a spherical coordinate system of reference. It is shown that the expressions for the various strains are very simple. Streaming motions and octahedral shear strain contours are presented in graphical forms. Key words : simple pile, streaming motion, strain field.


Author(s):  
Anand Desai ◽  
James Geer ◽  
Bahgat Sammakia

This paper presents the results of an experimental study of steady state heat conduction in a three dimensional stack package. The temperatures are measured at different interfaces within the stacked package. Delphi devices are used in the experiment which enables controlled power input and surface temperature of the devices. The experiment is carried out for three different boundary conditions on the package. The power input in varied to study its effects. A numerical model is created to compare to the experimental results. The results are also compared with the analytical solution presented in Desai et al [5] and Geer et al [6]. The results indicate that the experimental, numerical and analytical solutions follow the same trend. The agreement between the experimental and numerical results improves when the lateral losses are taken into account.


Author(s):  
Su Yan ◽  
Mehrdad N. Ghasemi-Nejhad

A three-dimensional dynamic analysis of a satellite dish in spherical coordinate system is investigated. The method of separation of variables is employed to obtain the explicit 3D solution of the partial differential governing equation of the active composite satellite dish (ACSD). Then, the mode shape functions are expanded as a combination of periodic functions, associated Legendre functions, and spherical Bessel functions. The validation of the theoretical model is performed by comparing the developed analytical mode shapes with finite element method (FEM) mode shapes. Also, using the developed analytical model, the disturbance observer (DOB) controller is employed for the ACSD shape control. The numerical results show that, by employing the DOB controller, more accurate shape control of the satellite dish is achieved and less control energy is consumed, when piezoelectric actuator patches are placed on their optimal locations.


2016 ◽  
Vol 33 (1) ◽  
pp. 65-75 ◽  
Author(s):  
M. R. Talaee ◽  
V. Sarafrazi

AbstractThis paper is devoted to the analytical solution of three-dimensional hyperbolic heat conduction equation in a finite solid medium with rectangular cross-section under time dependent and non-uniform internal heat source. The closed form solution of both Fourier and non-Fourier profiles are introduced with Eigen function expansion method. The solution is applied for simple simulation of absorption of a continues laser in biological tissue. The results show the depth of laser absorption in tissue and considerable difference between the Fourier and Non-Fourier temperature profiles. In addition the solution can be applied as a verification branch for other numerical solutions.


Sign in / Sign up

Export Citation Format

Share Document