Effect of chemical reaction and thermal radiation on heat and mass transfer flow of MHD micropolar fluid in a rotating frame of reference

2011 ◽  
Vol 54 (15-16) ◽  
pp. 3505-3513 ◽  
Author(s):  
K. Das
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Khilap Singh ◽  
Manoj Kumar

The effects of chemical reaction on heat and mass transfer flow of a micropolar fluid in a permeable channel with heat generation and thermal radiation is studied. The Rosseland approximations are used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been transformed into ordinary differential equation by using the similarity variables. The relevant nonlinear equations have been solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. The physical significance of interesting parameters on the flow and heat transfer characteristics as well as the local skin friction coefficient, wall couple stress, and the heat transfer rate are thoroughly examined.


Open Physics ◽  
2012 ◽  
Vol 10 (5) ◽  
Author(s):  
Dulal Pal ◽  
Babulal Talukdar

AbstractAn analytical study is presented for the problem of unsteady hydromagnetic heat and mass transfer for a micropolar fluid bounded by semi-infinite vertical permeable plate in the presence of first-order chemical reaction, thermal radiation and heat absorption. A uniform magnetic field acts perpendicularly to the porous surface which absorbs the micropolar fluid with a time-dependent suction velocity. The basic partial differential equations are reduced to a system of nonlinear ordinary differential equations which are solved analytically using perturbation technique. Numerical calculations for the analytical expressions are carried out and the results are shown graphically. The effects of the various dimensionless parameters related to the problem on the velocity, angular velocity, temperature and concentration fields are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document