A new target-oriented methodology of decreasing the regeneration temperature of solid–gas thermochemical sorption refrigeration system driven by low-grade thermal energy

2011 ◽  
Vol 54 (21-22) ◽  
pp. 4719-4729 ◽  
Author(s):  
T.X. Li ◽  
R.Z. Wang ◽  
J.K. Kiplagat ◽  
H. Chen ◽  
L.W. Wang
Author(s):  
Ji Li ◽  
Zikang Zhang ◽  
Runze Zhao ◽  
Bo Zhang ◽  
Yunmin Liang ◽  
...  

2016 ◽  
Vol 24 (02) ◽  
pp. 1630003 ◽  
Author(s):  
Anirban Sur ◽  
Randip K. Das

Researchers proved that, heat powered adsorption refrigeration technology is very effective methods for reutilization of low-grade thermal energy such as industrial waste heat, solar energy, and exhaust gases from engines. But to make it commercially competitive with the well-known vapor compression and absorption refrigeration system, the processes require high rates of heat and mass transfer characteristic between adsorbate and adsorbent as well as externally supplied heat exchanging fluid. This paper reviews various techniques that have been developed and applied to enhance the heat transfer and mass transfer in adsorber beds, and also discuss their effects of the performance on adsorption system. A comprehensive literature review has been conducted and it was concluded that this technology, although attractive, has limitations regarding its heat and mass transfer performance that seem difficult to overcome. Therefore, more researches are required to improve heat and mass transfer performance and sustainability of basic adsorption cycles.


1971 ◽  
Vol 93 (2) ◽  
pp. 172-176
Author(s):  
M. E. Lackey

The thermal energy requirements for air conditioning by compressive and absorption methods were determined for light-water, thermal-breeder, and fast-breeder reactors. The energy required to produce a ton-hour of refrigeration varied from 5100 Btu to 13,100 Btu by absorption and from 5600 to 8800 Btu by compression. The amount of waste heat dissipated to the environment at the reactor site as a consequence of producing a ton-hour of air conditioning ranged from an increase of 21,000 Btu for the electric-motor-driven refrigeration system to a decrease of 6000 Btu for the absorption refrigeration system.


Author(s):  
Ahmad Sleiti ◽  
Wahib Al-Ammari ◽  
Mohammed Al-Khawaja ◽  
Maxim Glushenkov ◽  
Alexander Kronberg

Around 17% of the globally generated energy is consumed for residential, commercial, and transportation refrigeration. The current cooling technologies utilize refrigerants with high Ozone Depletion and Global Warming Potentials. Furthermore, the current technologies are expensive alongside with toxicity and flammability hazards. On the other side, energy produced by combustion of fossil fuels results in substantial amounts of waste heat. Therefore, it is necessary to develop new refrigeration technologies that utilize waste heat as a source of energy with ecofriendly refrigerants with zero ozone depletion potential and zero global warming potential. In addition, this thermal mechanical refrigeration (TMR) technology improves the energy efficiency of the source of waste heat system and minimizes the emissions of the carbon dioxide (CO2). In this study, a novel thermo-mechanical refrigeration system is proposed. It operates with low-grade energy sources (such as waste heat) at temperature range of 60 oC to 100 oC. Furthermore, it has the advantage of working with low-frequency driver-compressor unit, which eliminates noise and increases its lifetime. Moreover, the TMR system is adaptable to commercial, transportation, and residential refrigeration applications.


Sign in / Sign up

Export Citation Format

Share Document