Milliscale confined impinging slot jets: Laminar heat transfer characteristics for an isothermal flat plate

2012 ◽  
Vol 55 (9-10) ◽  
pp. 2249-2260 ◽  
Author(s):  
Dae Hee Lee ◽  
Hyun Jin Park ◽  
Phil Ligrani
1966 ◽  
Vol 88 (1) ◽  
pp. 101-107 ◽  
Author(s):  
Robert Gardon ◽  
J. Cahit Akfirat

Local as well as average heat transfer coefficients between an isothermal flat plate and impinging two-dimensional jets were measured for both single jets and arrays of jets. For a large and technologically important range of variables the results have been correlated in relatively simple terms, and their application to design is briefly considered.


Author(s):  
Feng Zhang ◽  
Xinjun Wang ◽  
Jun Li ◽  
Rui Tan ◽  
Dongliang Wei

The present numerical study is conducted to investigate the flow and heat transfer characteristics for impingement cooling on concave or convex dimpled plate with four different dimple arrangements. The investigation of the impingement cooling on the flat plate is also conducted to serve as a contrast and these results are compared with experimental measurements to verify the computational method. Dimples studied here are placed, relative to impingement holes, in either spanwise shifted, in staggered, in in-line, or in streamwise shifted arrangements. The flow structure, pressure loss and heat transfer characteristics of the concave and convex dimpled plate of four different dimple arrangements have been obtained and compared with flat plate for the Reynolds number range of 15000 to 35000. The results show that compared with flat plate, the added concave or convex dimples only causes a negligible increase in the pressure loss, and the pressure loss is insensitive to concave or convex dimple arrangement patterns. In addition, compared with flat plate, both spanwise shifted and staggered concave dimple arrangements show better heat transfer performance, while in-line concave dimple arrangement show worse results. Besides that, the heat transfer performance for streamwise shifted concave dimple arrangement is the worst. Furthermore, compared with flat plate, all convex dimple arrangements studied here show better heat transfer performance.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
X. L. Wang ◽  
H. B. Yan ◽  
T. J. Lu ◽  
S. J. Song ◽  
T. Kim

This study reports on heat transfer characteristics on a curved surface subject to an inclined circular impinging jet whose impinging angle varies from a normal position θ = 0 deg to θ = 45 deg at a fixed jet Reynolds number of Rej = 20,000. Three curved surfaces having a diameter ratio (D/Dj) of 5.0, 10.0, and infinity (i.e., a flat plate) were selected, each positioned systematically inside and outside the potential core of jet flow where Dj is the circular jet diameter. Present results clarify similar and dissimilar local heat transfer characteristics on a target surface due to the convexity. The role of the potential core is identified to cause the transitional response of the stagnation heat transfer to the inclination of the circular jet. The inclination and convexity are demonstrated to thicken the boundary layer, reducing the local heat transfer (second peaks) as opposed to the enhanced local heat transfer on a flat plate resulting from the increased local Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document