Research on the effect of boundary pressure on the boundary heat transfer coefficients between hot stamping die and boron steel

Author(s):  
Huiping Li ◽  
Lianfang He ◽  
Chunzhi Zhang ◽  
Hongzhi Cui
2014 ◽  
Vol 1063 ◽  
pp. 334-338 ◽  
Author(s):  
Tzu Hao Hung ◽  
Heng Kuang Tsai ◽  
Fuh Kuo Chen ◽  
Ping Kun Lee

Due to the complexity of hot stamping mechanism, including the coupling of material formability, thermal interaction and metallurgical microstructure, it makes the process design more difficult even with the aid of the finite element analysis. In the present study, the experimental platforms were developed to measure and derive the friction and heat transfer coefficients, respectively. The experiments at various elevated temperatures and contact pressures were conducted and the friction coefficients and heat transfer coefficients were obtained. A finite element model was also established with the experimental data and the material properties of the boron steel calculated from the JMatPro software. The finite element simulations for the hot stamping forming of an automotive door beam, including transportation analysis, hot forming analysis and die quenching analysis were then performed to examine the forming properties of the door beam. The validation of the finite element results by the production part confirms the efficiency and accuracy of the developed experimental platforms and the finite element analysis for the process design of hot stamping.


2012 ◽  
Vol 184-185 ◽  
pp. 333-336 ◽  
Author(s):  
Hui Xie ◽  
Ya Ke Chen

Abstract. As an innovative process of manufacturing ultra high strength steel (UHSS), hot stamping or press hardening is a multi-physical coupling process with complex changes in thermal, mechanical and phase transformation. In this work, in order to study heat transfer from workpiece to upper & lower die and cooling water, a new approach, named Bulk Flow, is adopted to model the cooling ducts and to simulate heat transfer in hot stamping die. Not only can tool design, cooling duct layout and process parameters be studied and optimized to increase the cooling rate and to homogenize temperature distribution in workpiece, but also, the precision of hot stamping simulation be improved. The experimental results of boron steel components formed by the designed die show that the martensite is homogenous. It indicates the feasibility of the bulk flow method.


2015 ◽  
Vol 651-653 ◽  
pp. 1537-1542 ◽  
Author(s):  
Joseba Mendiguren ◽  
Rafael Ortubay ◽  
Xabier Agirretxe ◽  
José Miguel Martín ◽  
Lander Galdos ◽  
...  

The boron steel quenching requirement on hot forming manufacturing processes allows the industry to create tailored parts to improve their mechanical functionality. During the cooling, the microstructure of the material changes depending on the imposed cooling rate. However, an accurate prediction of the cooling ratios is needed in order to correctly design the process. In this work the interfacial heat transfer coefficient (HTC) has been determined at different contact conditions, varying the initial die temperature. Experimental tests have been realized in a SCHMIDT micro servo-press, which is able to compensate the thermal contraction of the blank and tools to precisely keep constant the contact pressure. Temperature evolution of the tools and the blank has been monitored with nine thermocouples. For the determination of the heat transfer coefficient (HTC) an analytical-numerical method has been used leading to a fast and reliable calculation method able to determine the HTC value for each process time. This methodology allows relating the HTC to the blank temperature, difference on temperature on the interface to improve the tailor tempering of boron alloys simulation.


Sign in / Sign up

Export Citation Format

Share Document