scholarly journals Re: Penetration behavior of opposed rows of staggered secondary air jets depending on jet penetration coefficient and momentum flux ratio

Author(s):  
James D. Holdeman
Author(s):  
James D. Holdeman ◽  
David S. Liscinsky ◽  
Daniel B. Bain

This paper summarizes experimental and computational results on the mixing of opposed rows of jets with a confined subsonic crossflow in rectangular ducts. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex 3-D flowfield in the combustion chambers in gas turbine engines. The principal observation was that the momentum-flux ratio, J, and the orifice spacing, S/H, were the most significant flow and geometric variables. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the orifice spacing was inversely proportional to the square-root of the momentum-flux ratio. It was also seen that planar averages must be considered in context with the distributions. Note also that the mass-flow ratios and the orifices investigated were often very large (jet-to-mainstream mass-flow ratio >1 and the ratio of orifices-area-to-mainstream-cross-sectional-area up to 0.5 respectively), and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations.


Author(s):  
James D. Holdeman ◽  
David S. Liscinsky ◽  
G. Scott Samuelsen ◽  
Victor L. Oechsle ◽  
Clifford E. Smith

This paper summarizes NASA-supported experimental and computational results on the mixing of a row of jets with a confined subsonic crossflow in a cylindrical duct. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex 3-D flowfield in the combustion chambers in gas turbine engines. The principal observations were that the momentum-flux ratio and the number of orifices were significant variables. Jet penetration was critical, and jet penetration decreased as either the number of orifices increased or the momentum-flux ratio decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the number of orifices was proportional to the square-root of the momentum-flux ratio. In the cylindrical geometry, planar variances are very sensitive to events in the near-wall region, so planar averages must be considered in context with the distributions. The mass-flow ratios and orifices investigated were often very large (mass-flow ratio >1 and ratio of orifice area-to-mainstream cross-sectional area up to 0.5), and the axial planes of interest were sometimes near the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations. The results shown also seem to indicate that non-reacting dimensionless scalar profiles can emulate the reacting flow equivalence ratio distribution reasonably well. The results cited suggest that further study may not necessarily lead to a universal “rule of thumb” for mixer design for lowest emissions, because optimization will likely require an assessment for a specific application.


2015 ◽  
Vol 137 (10) ◽  
Author(s):  
I. A. Sofia Larsson ◽  
T. Staffan Lundström ◽  
B. Daniel Marjavaara

The rotary kiln is the middle part of a grate-kiln iron ore pelletizing process and consists of a large, cylindrical rotating oven with a burner in one end. The flame is the heart of the process, delivering the necessary heat. The combustion process is largely controlled by the turbulent diffusion mixing between the primary fuel jet and the combustion air, called the secondary air, which is mostly induced through the kiln hood. The relatively high momentum of the secondary air implies that the resulting flow field has a significant impact on the combustion process, justifying a systematic study of the factors influencing the dynamics of the secondary air flow field, by neglecting the primary fuel jet and the combustion. The objective of this work is thus to investigate how the geometry and the momentum flux ratio of the inlets affect the flow field in the kiln. Down-scaled models of the kiln are investigated numerically. It is found that the resulting flow field is highly affected by both the geometry and momentum flux ratio of the inlet flows, including effects from pressure driven secondary flow occurring in the semicircular inlet ducts. The dynamics of the flow is further investigated using proper orthogonal decomposition (POD) resulting in a deeper understanding of the forming, interaction and convection of the vortical structures.


1997 ◽  
Vol 119 (4) ◽  
pp. 852-862 ◽  
Author(s):  
J. D. Holdeman ◽  
D. S. Liscinsky ◽  
V. L. Oechsle ◽  
G. S. Samuelsen ◽  
C. E. Smith

This paper summarizes NASA-supported experimental and computational results on the mixing of a row of jets with a confined subsonic crossflow in a cylindrical duct. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex three-dimensional flowfield in the combustion chambers in gas turbine engines. The principal observations were that the momentum-flux ratio and the number of orifices were significant variables. Jet penetration was critical, and jet penetration decreased as either the number of orifices increased or the momentum-flux ratio decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the number of orifices was proportional to the square root of the momentum-flux ratio. In the cylindrical geometry, planar variances are very sensitive to events in the near-wall region, so planar averages must be considered in context with the distributions. The mass-flow ratios and orifices investigated were often very large (mass-flow ratio >1 and ratio of orifice area-to-mainstream cross-sectional area up to 0.5), and the axial planes of interest were sometimes near the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations. The results shown also seem to indicate that nonreacting dimensionless scalar profiles can emulate the reacting flow equivalence ratio distribution reasonably well. The results cited suggest that further study may not necessarily lead to a universal “rule of thumb” for mixer design for lowest emissions, because optimization will likely require an assessment for a specific application.


1999 ◽  
Vol 121 (3) ◽  
pp. 551-562 ◽  
Author(s):  
J. D. Holdeman ◽  
D. S. Liscinsky ◽  
D. B. Bain

This paper summarizes experimental and computational results on the mixing of opposed rows of jets with a confined subsonic crossflow in rectangular ducts. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex three-dimensional flowfield in the combustion chambers in gas turbine engines. The principal observation was that the momentum-flux ratio, J, and the orifice spacing, S/H, were the most significant flow and geometric variables. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the orifice spacing was inversely proportional to the square-root of the momentum-flux ratio. It was also seen that planar averages must be considered in context with the distributions. Note also that the mass-flow ratios and the orifices investigated were often very large (jet-to-mainstream mass-flow ratio > 1 and the ratio of orifices-area-to-mainstream-cross-sectional-area up to 0.5, respectively), and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Artur Joao Carvalho Figueiredo ◽  
Robin Jones ◽  
Oliver J. Pountney ◽  
James A. Scobie ◽  
Gary D. Lock ◽  
...  

This paper presents volumetric velocimetry (VV) measurements for a jet in crossflow that is representative of film cooling. VV employs particle tracking to nonintrusively extract all three components of velocity in a three-dimensional volume. This is its first use in a film-cooling context. The primary research objective was to develop this novel measurement technique for turbomachinery applications, while collecting a high-quality data set that can improve the understanding of the flow structure of the cooling jet. A new facility was designed and manufactured for this study with emphasis on optical access and controlled boundary conditions. For a range of momentum flux ratios from 0.65 to 6.5, the measurements clearly show the penetration of the cooling jet into the freestream, the formation of kidney-shaped vortices, and entrainment of main flow into the jet. The results are compared to published studies using different experimental techniques, with good agreement. Further quantitative analysis of the location of the kidney vortices demonstrates their lift off from the wall and increasing lateral separation with increasing momentum flux ratio. The lateral divergence correlates very well with the self-induced velocity created by the wall–vortex interaction. Circulation measurements quantify the initial roll up and decay of the kidney vortices and show that the point of maximum circulation moves downstream with increasing momentum flux ratio. The potential for nonintrusive VV measurements in turbomachinery flow has been clearly demonstrated.


Author(s):  
Venkat S. Iyengar ◽  
Sathiyamoorthy Kumarasamy ◽  
Srinivas Jangam ◽  
Manjunath Pulumathi

Cross flow fuel injection is a widely used approach for injecting liquid fuel in gas turbine combustors and afterburners due to the higher penetration and rapid mixing of fuel and the cross flowing airstream. Because of the very limited residence time available in these combustors it is essential to ensure that smaller drop sizes are generated within a short axial distance from the injector in order to promote effective mixing. This requirement calls for detailed investigations into spray characteristics of different injector configurations in a cross-flow environment for identifying promising configurations. The drop size characteristics of a liquid jet issuing from a forward angled injector into a cross-flow of air were investigated experimentally at conditions relevant to gas turbine afterburners. A rig was designed and fabricated to investigate the injection of liquid jet in subsonic cross-flow with a rectangular test section of cross section measuring 50 mm by 70 mm. Experiments were done with a 10 degree forward angled 0.8 mm diameter plain orifice nozzle which was flush mounted on the bottom plate of test section. Laser diffraction using Malvern Spraytec particle analyzer was used to measure drops size and distributions in the near field of the spray. Measurements were performed at a distance of 70 mm from the injector at various locations along the height of the spray plume for a reasonable range of liquid flow rates as in practical devices. The sprays were characterized using the non dimensional parameters such as the Weber number and the momentum flux ratio and drop sizes were measured at three locations along the height of the spray from the bottom wall. The momentum flux ratio was varied from 5 to 25. Results indicate that with increase in momentum flux ratio the SMD reduced at the specific locations and an higher overall SMD was observed as one goes from the bottom to the top of the spray plume. This was accompanied by a narrowing of the drop size distribution.


Sign in / Sign up

Export Citation Format

Share Document