The effect of four elliptical cylinders with different aspect ratios on the natural convection inside a square enclosure

Author(s):  
Young Min Seo ◽  
Man Yeong Ha ◽  
Yong Gap Park
1985 ◽  
Vol 107 (1) ◽  
pp. 139-146 ◽  
Author(s):  
D. M. Kim ◽  
R. Viskanta

This paper presents numerical and experimental results for buoyancy-induced flow in a two-dimensional, fluid-filled enclosure. Rectangular cavities formed by finite conductance walls of different void fractions and aspect ratios are considered. Parametric heat transfer calculations have been performed and results are presented and discussed. Local and average Nusselt numbers along the cavity walls are reported for a range of parameters of physical interest. The temperatures in the walls were measured with thermocouples, and the temperature distributions in the air-filled cavity were determined using a Mach-Zehnder interferometer. Good agreement has been obtained between the measured and the predicted temperatures in both the solid wall and in the fluid using the mathematical model. Wall heat conduction reduces the average temperature differences across the cavity, partially stabilizes the flow, and decreases natural convection heat transfer.


1982 ◽  
Vol 104 (1) ◽  
pp. 111-117 ◽  
Author(s):  
B. A. Meyer ◽  
J. W. Mitchell ◽  
M. M. El-Wakil

The effects of cell wall thickness and thermal conductivity on natural convective heat transfer within inclined rectangular cells was studied. The cell walls are thin, and the hot and cold surfaces are isothermal. The two-dimensional natural convection problem was solved using finite difference techniques. The parameters studied were cell aspect ratios (A) of 0.5 and 1, Rayleigh numbers (Ra) up to 105, a Prandtl number (Pr) of 0.72 and a tilt angle (φ) of 60 deg. These parameters are of interest in solar collectors. The numerical results are substantiated by experimental results. It was found that convection coefficients for cells with adiabatic walls are substantially higher than those for cells with conducting walls. Correlations are given for estimating the convective heat transfer across the cell and the conductive heat transfer across the cell wall. These correlations are compared with available experimental and numerical work of other authors.


1994 ◽  
Vol 116 (3) ◽  
pp. 627-632 ◽  
Author(s):  
Y. Kamotani ◽  
F.-B. Weng ◽  
S. Ostrach ◽  
J. Platt

An experimental study is made of natural convection oscillations in gallium melts enclosed by right circular cylinders with differentially heated end walls. Cases heated from below are examined for angles of inclination (φ) ranging from 0 deg (vertical) to 75 deg with aspect ratios Ar (height/diameter) of 2, 3, and 4. Temperature measurements are made along the circumference of the cylinder to detect the oscillations, from which the oscillatory flow structures are inferred. The critical Rayleigh numbers and oscillation frequencies are determined. For Ar=3 and φ = 0 deg, 30 deg the supercritical flow structures are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document