Influence of substrate temperature on Marangoni convection instabilities in a sessile droplet evaporating at constant contact line mode

Author(s):  
Tian-Shi Wang ◽  
Wan-Yuan Shi
2009 ◽  
Vol 311 (10) ◽  
pp. 2992-2995 ◽  
Author(s):  
Shigeya Naritsuka ◽  
Midori Mori ◽  
Yoshitaka Takeuchi ◽  
Takahiro Maruyama

2012 ◽  
Vol 727-728 ◽  
pp. 691-696 ◽  
Author(s):  
Tiago Falcade ◽  
Giselle Barbosa de Oliveira ◽  
Diego Pereira Tarragó ◽  
Vânia Caldas de Sousa ◽  
Célia de Fraga Malfatti

Many studies have been reported in the literature related to YSZ films deposited on dense substrate or applied directly on the SOFC anode. However, there are not a lot of studies about the YSZ deposition on the cathode. The present work aims to obtain yttria-stabilized zirconia (YSZ), using the spray pyrolysis technique, for their application as electrolyte in solid oxide fuel cells (SOFC). The films were obtained from a precursor solution containing zirconium and yttrium salts, dissolved in ethanol and propylene glycol (1:1), this solution was sprayed onto a heated LSM porous substrate. The substrate temperature was varied in order to obtain dense and homogeneous films. After deposition, the films were heat treated, aiming to crystallize and stabilize the zirconia cubic phase. The films were characterized by Scanning Electron Microscopy (SEM), thermal analysis, X-ray diffraction and Fourier transform Infrared Spectroscopy (FT-IR).


2017 ◽  
Vol 117 ◽  
pp. 274-286 ◽  
Author(s):  
Wan-Yuan Shi ◽  
Kai-Yi Tang ◽  
Jia-Nan Ma ◽  
Yi-Wei Jia ◽  
Han-Ming Li ◽  
...  

2015 ◽  
Vol 784 ◽  
pp. 465-486 ◽  
Author(s):  
Leonardo Espín ◽  
Satish Kumar

Wetting of permeable substrates by liquids is an important phenomenon in many natural and industrial processes. Substrate heterogeneities may significantly alter liquid spreading and interface shapes, which in turn may alter liquid imbibition. A new lubrication-theory-based model for droplet spreading on permeable substrates that incorporates surface roughness is developed in this work. The substrate is assumed to be saturated with liquid, and the contact-line region is described by including a precursor film and disjoining pressure. A novel boundary condition for liquid imbibition is applied that eliminates the need for a droplet-thickness-dependent substrate permeability that has been employed in previous models. A nonlinear evolution equation describing droplet height as a function of time and the radial coordinate is derived and then numerically solved to characterize the influence of substrate permeability and roughness on axisymmetric droplet spreading. Because it incorporates surface roughness, the new model is able to describe the contact-line pinning that has been observed in experiments but not captured by previous models.


Sign in / Sign up

Export Citation Format

Share Document