Film cooling performance evaluation of the furcate hole with cross-flow coolant injection: A comparative study

Author(s):  
Cun-liang Liu ◽  
Lin Ye ◽  
Fan Zhang ◽  
Rong Huang ◽  
Bingran Li
Author(s):  
Bingran Li ◽  
Cunliang Liu ◽  
Lin Ye ◽  
Huiren Zhu ◽  
Fan Zhang

Abstract To investigate the application of ribbed cross-flow coolant channels with film hole effusion and the effects of the internal cooling configuration on film cooling, experimental and numerical studies are conducted on the effect of the relative position of the film holes and different orientation ribs on the film cooling performance. Three cases of the relative position of the film holes and different orientation ribs (post-rib, centered, and pre-rib) in two ribbed cross-flow channels (135° and 45° orientation ribs) are investigated. The film cooling performances are measured under three blowing ratios by the transient liquid crystal measurement technique. A RANS simulation with the realizable k-ε turbulence model and enhanced wall treatment is performed. The results show that the cooling effectiveness and the downstream heat transfer coefficient for the 135° rib are basically the same in the three position cases, and the differences between the local effectiveness average values for the three are no more than 0.04. The differences between the heat transfer coefficients are no more than 0.1. The “pre-rib” and “centered” cases are studied for the 45° rib, and the position of the structures has little effect on the film cooling performance. In the different position cases, the outlet velocity distribution of the film holes, the jet pattern and the discharge coefficient are consistent with the variation in the cross flow. The related research previously published by the authors showed that the inclination of the ribs with respect to the holes affects the film cooling performance. This study reveals that the relative positions of the ribs and holes have little effect on the film cooling performance. This paper expands and improves the study of the effect of the internal cooling configuration on film cooling and makes a significant contribution to the design and industrial application of the internal cooling channel of a turbine blade.


Author(s):  
Hefang Deng ◽  
Jinfang Teng ◽  
Mingmin Zhu ◽  
Xiaoqing Qiang ◽  
Shaopeng Lu ◽  
...  

2021 ◽  
pp. 1-24
Author(s):  
Zhigang LI ◽  
Bo Bai ◽  
Jun Li ◽  
Shuo Mao ◽  
Wing Ng ◽  
...  

Abstract Detailed experimental and numerical studies on endwall heat transfer and cooling performance with coolant injection flow through upstream discrete holes is presented in this paper. High resolution heat transfer coefficient (HTC) and adiabatic film cooling effectiveness values were measured using a transient infrared thermography technique on an axisymmetric contoured endwall. The tests were performed in a transonic linear cascade blow-down wind tunnel facility. Conditions were representative of a land-based power generation turbine with exit Mach number of 0.85 corresponding to exit Reynolds number of 1.5 × 106, based on exit condition and axial chord length. A high turbulence level of 16% with an integral length scale of 3.6%P was generated using inlet turbulence grid to reproduce the typical turbulence conditions in real turbine. Low temperature air was used to simulate the typical coolant-to-mainstream condition by controlling two parameters of the upstream coolant injection flow: mass flow rate to determine the coolant-to-mainstream blowing ratio (BR = 2.5, 3.5), and gas temperature to determine the density ratio (DR = 1.2). To highlight the interactions between the upstream coolant flow and the passage secondary flow combined with the influence on the endwall heat transfer and cooling performance, a comparison of CFD predictions to experimental results was performed by solving steady-state Reynolds-Averaged Navier-Stokes (RANS) using the commercial CFD solver ANSYS Fluent V.15.


2019 ◽  
Vol 29 (8) ◽  
pp. 2728-2753
Author(s):  
Guohua Zhang ◽  
Xueting Liu ◽  
Bengt Ake Sundén ◽  
Gongnan Xie

Purpose This study aims to clarify the mechanism of film hole location at the span-wise direction of an internal cooling channel with crescent ribs on the adiabatic film cooling performance, three configurations are designed to observe the effects of the distance between the center of the ellipse and the side wall(Case 1, l = w/2, Case 2, l = w/3 and for Case 3, l = w/4). Design/methodology/approach Numerical simulations are conducted under two blowing ratios (i.e. 0.5 and 1) and a fixed cross-flow Reynolds number (Rec = 100,000) with a verified turbulence model. Findings It is shown that at low blowing ratio, reducing the distance increases the film cooling effectiveness but keeps the trend of the effectiveness unchanged, while at high blowing ratio, the characteristic is a little bit different in the range of 0 = x/D = 10. Research limitations/implications These features could be explained by the fact that shrinking the distance between the hole and side wall induces a much smaller reserved region and vortex downstream the ribs and a lower resistance for cooling air entering the film hole. Furthermore, the spiral flow inside the hole is impaired. Originality/value As a result, the kidney-shaped vortices originating from the jet flow are weakened, and the target surface can be well covered, resulting in an enhancement of the adiabatic film cooling performance.


2021 ◽  
pp. 1-28
Author(s):  
Zhi-Qiang Yu ◽  
Jianjun Liu ◽  
Chen Li ◽  
Baitao An ◽  
Guang-Yao Xu

Abstract This paper focuses on the influences of the discrete hole shape and layout on the blade endwall film cooling effectiveness. The diffusion slot hole was first applied to the blade endwall and compared with the fan-shaped hole. The effect of upstream purge slot injection on the film cooling performance of the discrete hole was also investigated. Experiments were performed in a linear cascade with a exit Reynolds number of 2.64×105. The film cooling effectiveness on the blade endwall were measured by the pressure sensitive paint technique. Results indicate that the diffusion slot hole significantly increases the film cooling effectiveness on the blade endwall compared to the fan-shaped hole, especially at high blowing ratio. The maximum relative increment of the cooling effectiveness is over 40%. The layout with the discrete holes arranged lining up with the tangent direction of the blade profile offset curves exhibits a comparable film cooling effectiveness with the layout with the discrete holes arranged according to the cross-flow direction. The film cooling effectiveness on the pressure surface corner is remarkably enhanced by deflecting the hole orientation angle towards the pressure surface. The combination of purge slot and diffusion slot holes supplies a full coverage film cooling for the entire blade endwall at coolant mass flow ratio of the purge slot of 1.5% and blowing ratio of 2.5. In addition, the slot injection leads to a non-negligible influence on the cooling performance of the discrete holes near the separation line.


Author(s):  
Zhiqiang Yu ◽  
Jianjun Liu ◽  
Chen Li ◽  
Baitao An ◽  
Guangyao Xu

Abstract This paper focuses on the influences of the discrete hole shape and layout on the blade endwall film cooling effectiveness. The effect of upstream purge slot injection on the film cooling performance of the discrete hole was also investigated. The diffusion slot hole was first applied to the blade endwall. As a comparison, the cooling performance of the fan-shaped hole was also measured. Totally, six discrete-hole cooling configurations (2 hole shapes × 3 layouts) were investigated. Experiments were performed in a seven-blade linear cascade with the exit Reynolds number of 2.64 × 105. The average blowing ratios (BR) of the discrete holes changed from 0.5 to 2.5, and the coolant mass flow ratio of the purge slot (MFR) was fixed at MFR = 1.5%. The distributions of the cooling effectiveness on the blade endwall were measured by the pressure sensitive paint technique. Results indicate that the diffusion slot hole significantly increases the film cooling effectiveness on the blade endwall compared to the fan-shaped hole, especially at high blowing ratio. The maximum relative increment of the cooling effectiveness is over 40%. The layout with the discrete holes arranged lining up with the tangent direction of the blade profile offset curves exhibits a comparable film cooling effectiveness with the layout with the discrete holes arranged according to the cross-flow direction. The film cooling effectiveness on the pressure surface corner is remarkably enhanced by deflecting the hole orientation angle towards the pressure surface. The combination of purge slot and diffusion slot holes supplies a full coverage film cooling for the entire blade endwall at MFR = 1.5% and BR = 2.5. In addition, the slot injection leads to a non-negligible influence on the cooling performance of the discrete holes near the separation line.


Author(s):  
Yifei Li ◽  
Yang Zhang ◽  
Xinrong Su ◽  
Xin Yuan

The influence of the cross flow in mainstream on film cooling performance and jet flow field is investigated experimentally and numerically. To show the effect of cross flow in mainstream without the influence of the other secondary flows, a curved test section is constructed to generate a cross flow, simulating the curved turbine passage. Both the straight and the curved passage are used to show the differences of cooling performance for shaped holes with and without the cross flow, with blowing ratio varying from M = 0.5 to M = 2.5. Pressure sensitive paint is used to measure the adiabatic cooling effectiveness, and the ink trace measurement is conducted to present the friction lines on the endwall platform. Numerical simulations are performed to show the flow field. The cross flow is accelerated in a curved passage and migrates the fluid near the endwall platform. Due to the cross flow in the mainstream, the deflection angle changes a lot along the normal direction to the endwall, and dominates the spatial distribution of coolant. Although the cooling trace follows the trend of wall surface streamlines, the migration of coolant is slower than the deviation of the friction line, and the difference increases with increasing blowing ratios. The cross flow enhances the lateral dispersion, decreasing the peak value of cooling effectiveness but increasing the laterally averaged cooling effectiveness. Higher blowing ratios lead to a higher intensity of a counter-rotating vortex pair that limits lateral dispersion near the outlet of cooling hole. But the effect of cross flow dominates the flow pattern downstream. The cooling performance has a significant difference with the influence of the cross flow. This study is essential to understand the interaction of the cross flow and the film cooling in gas turbines.


Author(s):  
Lin Ye ◽  
Cun-liang Liu ◽  
Hui-ren Zhu ◽  
Jian-xia Luo ◽  
Ying-ni Zhai

This paper presents an experimental and numerical investigation on the film cooling with different coolant feeding channel structures. Two ribbed cross-flow channels with rib-orientation of 135° and 45° respectively and the plenum coolant channel have been studied and compared to find out the effect of rib orientation on the film cooling performances of cylindrical holes. The film cooling effectiveness and heat transfer coefficient were measured by the transient heat transfer measurement technique with narrow-band thermochromic liquid crystal. Numerical simulations with realizable k-ε turbulence model were also performed to analyze the flow mechanism. The results show that the coolant channel structure has a notable effect on the flow structure of film jet which is the most significant mechanism affecting the film cooling performance. Generally, film cooling cases fed with ribbed cross-flow channels have asymmetric counter-rotating vortex structures and related asymmetric temperature distributions, which make the film cooling effectiveness and the heat transfer coefficient distributions asymmetric to the hole centerline. The discharge coefficient of the 45° rib case is the lowest among the three cases under all the blowing ratios. And the plenum case has higher discharge coefficient than the 135° rib case under low blowing ratio. With the increase of blowing ratio, the discharge coefficient of the 135° rib case gets larger than the plenum case gradually, because the vortex in the upper half region of the coolant channel rotates in the same direction with the film hole inclination direction and makes the jet easy to flow into the film hole in the 135° rib case.


2018 ◽  
Vol 74 (4) ◽  
pp. 1121-1138 ◽  
Author(s):  
Guohua Zhang ◽  
Jian Liu ◽  
Bengt Sundén ◽  
Gongnan Xie

Author(s):  
Christian Saumweber ◽  
Achmed Schulz

Cooling holes in real gas turbine applications are prevalently exposed to cross-flow in the coolant passage. The majority of the studies available in literature do not consider the effects of flow in the coolant passage. Our own studies however reveal that especially diffuser holes are very susceptible in respect to cross-flow at the hole entrance, if the orientation of the cross-flow is perpendicular to the symmetry plane of the cooling hole. The effect of coolant cross-flow will be discussed in detail. The superordinate target is to identify the dominating mechanisms, which determine the flow field within the diffuser hole and hence limit the potential of cooling performance augmentation. For this reason a fan-shaped hole with 14° expansion angle will be compared to a simple cylindrical hole. Both holes have a length-to-diameter ratio of 6 and an inclination angle of 30°. The comparison will be performed by means of experimentally gained discharge coefficients, local and laterally averaged adiabatic film cooling effectiveness, and heat transfer coefficients. Numerical simulations of the cooling flow will support the interpretation of the experimental results.


Sign in / Sign up

Export Citation Format

Share Document