scholarly journals Performance score based multi-objective optimization for thermal design of partially filled high porosity metal foam pipes under forced convection

Author(s):  
Prakash H. Jadhav ◽  
Trilok G ◽  
N Gnanasekaran ◽  
Moghtada Mobedi
2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Prakash H. Jadhav ◽  
N. Gnanasekaran ◽  
D. Arumuga Perumal

Abstract The intent of the current research work is to emphasize the computational modeling of forced convection heat dissipation in the presence of high porosity and thermal conductivity metallic foam in a horizontal pipe for different regimes of the fluid flow for a range of Reynolds number. A two-dimensional physical domain is considered in which Darcy extended Forchheimer (DEF) model is adopted in the aluminum metallic foam to predict the features of fluid flow and local thermal nonequilibrium (LTNE) model is employed for the analysis of heat transfer in a horizontal pipe for different flow regimes. The numerical results are initially matched with experimental and analytical results for the purpose of validation. The average Nusselt number for fully filled foam is found to be higher compared to other filling rate of metallic foams and the clear pipe at the cost of pressure drop. As an important finding, it has been observed that the laminar and transition flow gives higher heat transfer enhancement ratio and thermal performance factor compared to turbulent flow. This work resembles numerous industrial applications such as solar collectors, heat exchangers, electronic cooling, and microporous heat exchangers. The novelty of the work is the selection of suitable flow and thermal models in order to clearly assimilate the flow and heat transfer in metallic foam. The presence of aluminum metal foam is highlighted for the augmentation of heat dissipation in terms of PPI and porosity. The parametric study proposed in this work surrogates the complexity and cost involved in developing an expensive experimental setup.


Energy ◽  
2020 ◽  
Vol 208 ◽  
pp. 118270
Author(s):  
Ali Elghool ◽  
Firdaus Basrawi ◽  
Thamir Khalil Ibrahim ◽  
Hassan Ibrahim ◽  
M. Ishak ◽  
...  

2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Saket Karajgikar ◽  
Dereje Agonafer ◽  
Kanad Ghose ◽  
Bahgat Sammakia ◽  
Cristina Amon ◽  
...  

Integration of different functional components such as level two (L2) cache memory, high-speed I/O interfaces, and memory controller has enhanced microprocessor performance. In this architecture, certain functional units on the microprocessor dissipate a significant fraction of the total power while other functional units dissipate little or no power. This highly nonuniform power distribution results in a large temperature gradient with localized hot spots that may have detrimental effects on computer performance, product reliability, and yield. Moving the functional units may reduce the junction temperature but can affect performance by a factor as much as 30%. In this paper, a multi-objective optimization is performed to minimize the junction temperature without significantly altering the computer performance. The analysis was performed for 90 nm Pentium IV Northwood architecture operating at 3 GHz clock speed. Each functional unit on the die has a specific role, so functional units with similar roles were grouped together. Thus, the actual Pentium IV die was divided into four groups (front end, execution cores, bus and L2, and out-of-order engine). Repositioning constraints were determined using circuit delay models of major functional units in a micro-architectural simulator. Thus, depending on the scenario, relocating functional units can result in virtually no performance loss (less than 2% is assumed to be minimal and is reported as 0%) to as much as 30% performance loss. From the results, the minimum and the maximum temperatures were 56.6°C and 62.2°C. This ΔT corresponds to thermal design power of 60.2 W. For microprocessors with higher thermal design power (115 W) and operating at higher clock speed, higher ΔT can be realized. Based on this paper’s analysis, the optimized scenario resulted in a junction temperature of 56.6°C at the cost of a 14% performance loss.


Sign in / Sign up

Export Citation Format

Share Document