Experimental study of the heat transfer of single-jet impingement cooling onto a large heated plate near industrial conditions

Author(s):  
A. V. S. Oliveira ◽  
D. Maréchal ◽  
J.-L. Borean ◽  
V. Schick ◽  
J. Teixeira ◽  
...  
Author(s):  
Ketan Atulkumar Ganatra ◽  
Dushyant Singh

Abstract The experimental study for air slot jet impingement cooling from the heated cylinder is carried out. The heated cylinder is placed on a flat plate. The flat plate has an effective dimension as plate length (P) from heat transfer point of view. The heating of the cylindrical surface is done by providing a constant heat flux. The various parameters which affect the heat transfer from the cylinder are ReD, h/S, S/D, and P/D. The range of the parameters considered are ReD = 10,000–25,000, h/S = 4–12, S/D = 0.072–0.108, and P/D = 0–2. The effect of various parameters on heat transfer distribution (stagnation and local Nusselt number) from the cylinder is investigated. The local Nusselt number has a maximum value at θ = 0 deg and then it decreases upto θ = 180 deg. This trend is observed for all the parametric variations. The stagnation Nusselt number (Nustag) and local Nusselt number increases with the change of parameters as increase in ReD and S/D and decrease in h/S. However, Nustag remains independent with the change in P/D. The correlation for stagnation and mean Nusselt number is developed using regression analysis as a function of ReD, h/S, S/D, and P/D. The maximum error associated with the correlated value of Nustag and Num as compared with the experimental data is observed as ±13% and ±25%.


Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


2017 ◽  
Vol 30 (2) ◽  
pp. 586-594 ◽  
Author(s):  
Ying Zhou ◽  
Guiping Lin ◽  
Xueqin Bu ◽  
Lizhan Bai ◽  
Dongsheng Wen

2019 ◽  
Vol 160 ◽  
pp. 114019 ◽  
Author(s):  
Medhat M. Sorour ◽  
Wael M. El-Maghlany ◽  
Mohamed A. Alnakeeb ◽  
Amgad M. Abbass

2021 ◽  
Author(s):  
Karan Anand

This research provides a computational analysis of heat transfer due to micro jet-impingement inside a gas turbine vane. A preliminary-parametric analysis of axisymmetric single jet was reported to better understand micro jet-impingement. In general, it was seen that as the Reynolds number increased the Nusselt number values increased. The jet to target spacing had a considerably lower impact on the heat transfer rates. Around 30% improvement was seen by reducing the diameter to half while changing the shape to an ellipse saw 20.8% improvement in Nusselt value. The numerical investigation was then followed by studying the heat transfer characteristics in a three-dimensional, actual-shaped turbine vane. Effects of jet inclination showed enhanced mixing and secondary heat transfer peaks. The effect of reducing the diameter of the jets to 0.125 mm yielded 55% heat transfer improvements compared to 0.51 mm; the tapering effect also enhanced the local heat transfer values as local velocities at jet exit increased.


Sign in / Sign up

Export Citation Format

Share Document