Experimental Study of Air Slot Jet Impingement Cooling From Cylinder Placed on a Flat Plate

Author(s):  
Ketan Atulkumar Ganatra ◽  
Dushyant Singh

Abstract The experimental study for air slot jet impingement cooling from the heated cylinder is carried out. The heated cylinder is placed on a flat plate. The flat plate has an effective dimension as plate length (P) from heat transfer point of view. The heating of the cylindrical surface is done by providing a constant heat flux. The various parameters which affect the heat transfer from the cylinder are ReD, h/S, S/D, and P/D. The range of the parameters considered are ReD = 10,000–25,000, h/S = 4–12, S/D = 0.072–0.108, and P/D = 0–2. The effect of various parameters on heat transfer distribution (stagnation and local Nusselt number) from the cylinder is investigated. The local Nusselt number has a maximum value at θ = 0 deg and then it decreases upto θ = 180 deg. This trend is observed for all the parametric variations. The stagnation Nusselt number (Nustag) and local Nusselt number increases with the change of parameters as increase in ReD and S/D and decrease in h/S. However, Nustag remains independent with the change in P/D. The correlation for stagnation and mean Nusselt number is developed using regression analysis as a function of ReD, h/S, S/D, and P/D. The maximum error associated with the correlated value of Nustag and Num as compared with the experimental data is observed as ±13% and ±25%.

2010 ◽  
Vol 297-301 ◽  
pp. 427-432 ◽  
Author(s):  
Pey Shey Wu ◽  
Chia Yu Hsieh ◽  
Shen Ta Tsai

Jet impingement heat transfer on a target plate covered with a thick porous layer with or without a cylindrical center cavity is experimentally investigated using the transient liquid crystal technique. Based on the results of jet impingement on a bare flat plate, heat transfer enhancement due to the attachment of porous medium is assessed. The varying parameters in the experiments include the nozzle-to-plate distance, jet Reynolds number, jet-to-cavity diameter ratio, and the cavity depth. Results of Nusselt number distribution, stagnation-zone Nusselt number, and averaged Nusselt number over a region of 3 times the hole diameter are documented. Experimental results show that the attachment of the porous layer with a center cavity can either hamper, or effectively enhance the jet impingement heat transfer over a flat plate. The maximum enhancement occurs at jet Reynolds number of 12400 when the cavity is a through hole and the cavity has the same diameter as the jet. The stagnation-zone Nusselt number increases 58.3% and the averaged Nusselt number increases 77.5% at the maximum enhancement condition. On the other hand, the addition of the thick porous layer without a center cavity gave rise to severe adverse effect on jet impingement heat transfer.


Author(s):  
Marcel Le´on De Paz ◽  
B. A. Jubran

Jet impingement cooling remains one of the key methods in various high-end cooling applications as it can induce higher heat transfer rates. The objective of this preliminary investigation is to shed some light on micro-impingement cooling and assess the accuracy for a future 3-dimensional turbine blade model. For the purpose of this study, several micro-jet impingement cases are modeled in Gambit and iterated with Fluent. The reference model consists of a single 500μm cylindrical nozzle impinging on a constant temperature flat plate. Conducive results were found on the effects of turbulence model, Reynolds number, and H/D ratio for the Nusselt distribution on the flat plate. The Reynolds numbers iterated were: 2000, 3000, 4000, 5000, and 6000. The different H/D ratios modeled were: 6, 5, 4, 3, 2, 1. In general, it was observed that a higher Reynolds number increased the heat transfer on the plate, but the jet to target spacing had no significant impact on it. All results were validated via comparison with several published experimental data, the deviation margins indicated a good agreement.


Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Öztop

Numerical study of jet impingement cooling of a corrugated surface with water–SiO2 nanofluid of different nanoparticle shapes was performed. The bottom wall is corrugated and kept at constant surface temperature, while the jet emerges from a rectangular slot with cold uniform temperature. The finite volume method is utilized to solve the governing equations. The effects of Reynolds number (between 100 and 500), corrugation amplitude (between 0 and 0.3), corrugation frequency (between 0 and 20), nanoparticle volume fraction (between 0 and 0.04), and nanoparticle shapes (spherical, blade, brick, and cylindrical) on the fluid flow and heat transfer characteristics were studied. Stagnation point and average Nusselt number enhance with Reynolds number and solid particle volume fraction for both flat and corrugated surface configurations. An optimal value for the corrugation amplitude and frequency was found to maximize the average heat transfer at the highest value of Reynolds number. Among various nanoparticle shapes, cylindrical ones perform the best heat transfer characteristics in terms of stagnation and average Nusselt number values. At the highest solid volume concentration of the nanoparticles, heat transfer values are higher for a corrugated surface when compared to a flat surface case.


2016 ◽  
Vol 819 ◽  
pp. 74-77
Author(s):  
Mohamad Nor Musa ◽  
Mohamad Faizal Fauzi

Jet impingement is one of cooling method used in order to achieve high heat transfer coefficient and widely used in industry applications such as drying of textile and film, glass and plastic sheets, cooling of electronic equipment, and heat treatment of metals. In this research, it focused on the effectiveness of the jet impingement cooling system on the convex surface based on mass blowing rate and nozzle exit to surface parameters. The scope of experiment research encompasses are convex surface made of aluminum alloy and diameter 12.5cm. For mass blowing rate parameters, it use ʋjet = 1.98m/s, 3.03m/s, 4.97m/s and 6.00m/s which has Reynolds number range from 643 until 1946. Nozzle exit to surface distance,s/d = 4.0, 8.0 and 12.0. In this experiment model, a major components that involved are a compressor, nozzle, convex surface model, K thermocouple and heater. For the result of the experiment, it is based on the data obtain through a heat transfer coefficient and Nusselt number which the plotted graph focus on the space spacing and Reynolds number parameters. For the graph Nusselt number versus s/d at stagnation point c/d=0, it shown that when the Reynolds number increase, the Nusselt number also increase. In term of effectiveness, the s/d=12.0 has a good effectiveness jet impingement cooling system. For the graph of Nusselt number versus Reynolds at stagnation point, c/d=0, as Reynolds number increase, the Nusselt number increase too. From this experiment the better cooling effect is at Reynolds number, Re=1946. Thus, it can conclude that, effectiveness for jet impingement cooling system on the convex surface occurs at the highest Reynolds number.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Abdel Rahman Salem ◽  
Farah Nazifa Nourin ◽  
Mohammed Abousabae ◽  
Ryoichi S. Amano

Abstract Internal cooling of gas turbine blades is performed with the combination of impingement cooling and serpentine channels. Besides gas turbine blades, the other turbine components such as turbine guide vanes, rotor disks, and combustor wall can be cooled using jet impingement cooling. This study is focused on jet impingement cooling, in order to optimize the coolant flow, and provide the maximum amount of cooling using the minimum amount of coolant. The study compares between different nozzle configurations (in-line and staggered), two different Reynold's numbers (1500 and 2000), and different stand-off distances (Z/D) both experimentally and numerically. The Z/D considered are 3, 5, and 8. In jet impingement cooling, the jet of fluid strikes perpendicular to the target surface to be cooled with high velocity to dissipate the heat. The target surface is heated up by a direct current (DC) power source. The experimental results are obtained by means of thermal image processing of the captured infra-red (IR) thermal images of the target surface. Computational fluid dynamics (CFD) analysis were employed to predict the complex heat transfer and flow phenomena, primarily the line-averaged and area-averaged Nusselt number and the cross-flow effects. In the current investigation, the flow is confined along with the nozzle plate and two parallel surfaces forming a bi-directional channel (bi-directional exit). The results show a comparison between heat transfer enhancement with in-line and staggered nozzle arrays. It is observed that the peaks of the line-averaged Nusselt number (Nu) become less as the stand-off distance (Z/D) increases. It is also observed that the fluctuations in the stagnation heat transfer are caused by the impingement of the primary vortices originating from the jet nozzle exit.


Author(s):  
J. Javier Otero-Pérez ◽  
Richard D. Sandberg ◽  
Satoshi Mizukami ◽  
Koichi Tanimoto

Abstract This article shows the first parametric study on turbulent multi-jet impingement cooling flows using large-eddy simulations (LES). We focus on assessing the influence of the inter-jet distance and the cross-flow conditions on the heat transfer at the impingement wall. The LES setup is thoroughly validated with both experimental and direct numerical simulation data, showing an excellent agreement. The inter-jet distance effect on the heat transfer is studied comparing three different distances, where the full Nusselt number profile decreases in amplitude when the jet distance is increased. To evaluate the cross-flow effects, we prescribe both laminar and turbulent inflow conditions at different cross-flow magnitudes ranging between 20% and 40% of the impinging jet speed. Large cross-flow intensities cause a jet deflection which reduces the maxima in the Nusselt number distribution, and it increases the heat transfer in the areas of the wall less affected by the jet impingement. Adding realistic turbulent fluctuations to the inflow enhances the cross-flow effects on the heat transfer at the impingement wall.


Author(s):  
Tooraj Yousefi ◽  
Saeed Ebrahimi ◽  
Masood Bigharaz ◽  
Sajjad Mahmoodi Nezhad

An experimental study has been carried out to investigate heat transfer characteristics on internal surfaces of a V-shaped plate exposed to a slot jet impingement of air. A square-edged nozzle is mounted parallel with V-shaped plate axis and jet flow impinges on the bottom of the V-shaped plate. The study is focused on Rayleigh number 159000, angle of V-shaped plate ranging from 22.5 to 45 degree, low Reynolds numbers ranging from 29.05 to 60.41, and slot-to-(V-shaped plate) spacing from 17 to 21 of the slot width. A Mach-Zehnder interferometer is used for measurement of local Nusselt number on the V-shaped plate. It is observed that the local Nusselt number and average Nusselt number decrease with increasing the jet spacing and increase with increasing the Reynolds number. Also the local Nusselt number and average nusselt number increase with rising the angle of V-shaped plate.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Ahmet Ümit Tepe ◽  
Kamil Arslan ◽  
Yaşar Yetişken ◽  
Ünal Uysal

In this study, effects of extended jet holes to heat transfer and flow characteristics of jet impingement cooling were numerically investigated. Cross-flow in the impinging jet cooling adversely affects the heat transfer on the target surface. The main purpose of this study is to reduce the negative effect of cross-flow on heat transfer by extending jet holes toward the target surface with nozzles. This study has been conducted under turbulent flow condition (15,000 ≤ Re  ≤  45,000). The surface of the turbine blade, which is the target surface, has been modeled as a flat plate. The effect of the ribs, placed on the target surface, on the heat transfer has been also investigated, and the results were compared with the flat surface. The parameters such as average and local Nusselt numbers on the target surface, flow characteristics, and compressor power have been examined in detail. It was obtained from the numerical results that the average Nusselt number increases with decreasing the gap between the target surface and the nozzle. In addition, the higher average Nusselt number was obtained on the flat surface than the ribbed surface. The lowest compressor power was achieved in the 5Dj nozzle gap for the flat surface and in the 4Dj nozzle gap for the ribbed surface.


Sign in / Sign up

Export Citation Format

Share Document