Experimental study on non-woody biomass gasification in a downdraft gasifier

2012 ◽  
Vol 37 (6) ◽  
pp. 4935-4944 ◽  
Author(s):  
Chao Gai ◽  
Yuping Dong
Author(s):  
Sherif Elshokary ◽  
Sherif Farag ◽  
OSayed Sayed Mohamed Abu-Elyazeed ◽  
Bitu Hurisso ◽  
Mostafa Ismai

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4903
Author(s):  
Yasutsugu Baba ◽  
Andante Hadi Pandyaswargo ◽  
Hiroshi Onoda

Forests cover two-thirds of Japan’s land area, and woody biomass is attracting attention as one of the most promising renewable energy sources in the country. The Feed-in Tariff (FIT) Act came into effect in 2012, and since then, woody biomass power generation has spread rapidly. Gasification power generation, which can generate electricity on a relatively small scale, has attracted a lot of attention. However, the technical issues of this technology remain poorly defined. This paper aims to clarify the problems of woody biomass gasification power generation in Japan, specifically on the challenges of improving energy utilization rate, the problem of controlling the moisture content, and the different performance of power generation facilities that uses different tree species. We also describe the technological development of a 2 MW updraft reactor for gasification and bio-oil coproduction to improve the energy utilization rate. The lower heating value of bio-oil, which was obtained in the experiment, was found to be about 70% of A-fuel oil. Among the results, the importance of controlling the moisture content of wood chips is identified from the measurement evaluation of a 0.36 MW-scale downdraft gasifier’s actual operation. We discuss the effects of tree species variation and ash on gasification power generation based on the results of pyrolysis analysis, industry analysis for each tree species. These results indicate the necessity of building a system specifically suited to Japan’s climate and forestry industry to allow woody biomass gasification power generation to become widespread in Japan.


2019 ◽  
Vol 113 ◽  
pp. 01002
Author(s):  
Alessandro Vulpio ◽  
Nicola Casari ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Alessio Suman

Biomass gasification is regarded as one of the most promising technology in the renewable energy field. The outcome of such operation, i.e. the synfuel, can be exploited in several ways, for example powering engines and turbines, and is considered more flexible than the biomass itself. For this reason, a careful analysis of the gasification performance is of paramount importance for the optimization of the process. One of the techniques that can be used for such a purpose, is the numerical analysis. CFD is indeed a tool that can be of great help in the design and study of the operation of the gasifier, allowing for an accurate prediction of the operating parameters. In this work, a downdraft gasifier is considered, and the biomass is made of wood chip. The present analysis is devoted to build the numerical model and simulate all the reactions that happen inside an actual gasifier, considering the drying of the wood chip, heating, pyrolysis, and combustion. Good match with experimental results is found, making the numerical model here presented a reliable virtual test bench where investigating the effects of variation in the working parameters.


Energy ◽  
2019 ◽  
Vol 170 ◽  
pp. 497-506 ◽  
Author(s):  
Ye Shen ◽  
Xian Li ◽  
Zhiyi Yao ◽  
Xiaoqiang Cui ◽  
Chi-Hwa Wang

Sign in / Sign up

Export Citation Format

Share Document