Worm-like Pt nanoparticles anchored on graphene with S, N co-doping and Fe3O4 functionalization for boosting the electrooxidation of methanol

2020 ◽  
Vol 45 (43) ◽  
pp. 22929-22937
Author(s):  
Jingping Zhong ◽  
Liyun Wu ◽  
Jianjun Lan ◽  
Muhammad Waqas ◽  
Miaolan Sun ◽  
...  
2015 ◽  
Vol 30 (9) ◽  
pp. 931 ◽  
Author(s):  
XU Ming-Li ◽  
DUAN Ben ◽  
ZHANG Ying-Jie ◽  
YANG Guo-Tao ◽  
DONG Peng ◽  
...  

2020 ◽  
Vol 31 (13) ◽  
pp. 10072-10077 ◽  
Author(s):  
Yongyan Xu ◽  
Kai Zhang ◽  
Chun Chang
Keyword(s):  

2019 ◽  
Vol 46 (10) ◽  
pp. 1485-1493 ◽  
Author(s):  
Fatemeh Jahanbakhsh ◽  
Alexander Lorenz

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2206
Author(s):  
Gaoqian Yuan ◽  
Gen Zhang ◽  
Kezhuo Li ◽  
Faliang Li ◽  
Yunbo Cao ◽  
...  

Loading a noble metal on Bi4Ti3O12 could enable the formation of the Schottky barrier at the interface between the former and the latter, which causes electrons to be trapped and inhibits the recombination of photoelectrons and photoholes. In this paper, AgPt/Bi4Ti3O12 composite photocatalysts were prepared using the photoreduction method, and the effects of the type and content of noble metal on the photocatalytic performance of the catalysts were investigated. The photocatalytic degradation of rhodamine B (RhB) showed that the loading of AgPt bimetallic nanoparticles significantly improved the catalytic performance of Bi4Ti3O12. When 0.10 wt% noble metal was loaded, the degradation rate for RhB of Ag0.7Pt0.3/Bi4Ti3O12 was 0.027 min−1, which was respectively about 2, 1.7 and 3.7 times as that of Ag/Bi4Ti3O12, Pt/Bi3Ti4O12 and Bi4Ti3O12. The reasons may be attributed as follows: (i) the utilization of visible light was enhanced due to the surface plasmon resonance effect of Ag and Pt in the visible region; (ii) Ag nanoparticles mainly acted as electron acceptors to restrain the recombination of photogenerated electron-hole pairs under visible light irradiation; and (iii) Pt nanoparticles acted as electron cocatalysts to further suppress the recombination of photogenerated electron-hole pairs. The photocatalytic performance of Ag0.7Pt0.3/Bi4Ti3O12 was superior to that of Ag/Bi4Ti3O12 and Pt/Bi3Ti4O12 owing to the synergistic effect between Ag and Pt nanoparticles.


2019 ◽  
Vol 166 (4) ◽  
pp. A658-A666 ◽  
Author(s):  
Zhenya Wang ◽  
Limei Sun ◽  
Wenyun Yang ◽  
Jinbo Yang ◽  
Kai Sun ◽  
...  

2014 ◽  
Vol 1052 ◽  
pp. 163-168 ◽  
Author(s):  
Xiao Na Li ◽  
Lu Jie Jin ◽  
Li Rong Zhao ◽  
Chuang Dong

Thermal stability, adhesion and electronic resistivity of the Cu alloy films with diffusion barrier elements (large atom Sn and small atom C) have been studied. Ternary Cu (0.6 at.% Sn, 2 at.% C) films were prepared by magnetron co-sputtering in this work. The microstructure and resistivity analysis on the films showed that the Cu (0.6 at.% Sn, 2 at.% C) film had better adhesion with the substrate and lower resistivity (2.8 μΩ·cm, after annealing at 600 °C for 1 h). Therefore, the doping of carbon atoms makes less effect to the resistivity by decreasing the amount of the doped large atoms, which results in the decreasing of the whole resistivity of the barrierless structure. After annealing, the doped elements in the film diffused to the interface to form self-passivated amorphous layer, which could further hinder the diffusion between Cu and Si. So thus ternary Cu (0.6 at.% Sn, 2 at.% C) film had better diffusion barrier effect. Co-doping of large atoms and small atoms in the Cu film is a promising way to improve the barrierless structure.


Langmuir ◽  
2003 ◽  
Vol 19 (10) ◽  
pp. 4396-4401 ◽  
Author(s):  
Ji Zhu ◽  
Zoltan Kónya ◽  
Victor F. Puntes ◽  
Imre Kiricsi ◽  
C. X. Miao ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document