Oxidation induced cubic-tetragonal phase transformation in titanium hydride powders

2020 ◽  
Vol 45 (46) ◽  
pp. 25043-25053
Author(s):  
R. Ben David ◽  
Y. Finkelstein ◽  
E. Grinberg ◽  
S. Samuha ◽  
E. Rabkin ◽  
...  
Author(s):  
E.K. Goo ◽  
R.K. Mishra

Ferroelectric domains are twins that are formed when PZT undergoes a phase transformation from a non-ferroelectric cubic phase to a ferroelectric tetragonal phase upon cooling below ∼375°C.,1 The tetragonal phase is spontaneously polarized in the direction of c-axis, making each twin a ferroelectric domain. Thin foils of polycrystalline Pb (Zr.52Ti.48)03 were made by ion milling and observed in the Philips EM301 with a double tilt stage.


1992 ◽  
Vol 7 (11) ◽  
pp. 3065-3071 ◽  
Author(s):  
Peir-Yung Chu ◽  
Isabelle Campion ◽  
Relva C. Buchanan

Phase transformation and preferred orientation in ZrO2 thin films, deposited on Si(111) and Si(100) substrates, and prepared by heat treatment from carboxylate solution precursors were investigated. The deposited films were amorphous below 450 °C, transforming gradually to the tetragonal and monoclinic phases on heating. The monoclinic phase developed from the tetragonal phase displacively, and exhibited a strong (111) preferred orientation at temperature as low as 550 °C. The degree of preferred orientation and the tetragonal-to-monoclinic phase transformation were controlled by heating rate, soak temperature, and time. Interfacial diffusion into the film from the Si substrate was negligible at 700 °C and became significant only at 900 °C, but for films thicker than 0.5 μm, overall preferred orientation exceeded 90%.


Author(s):  
Peter Bella ◽  
Michael Goldman

We are interested in the energetic cost of a martensitic inclusion of volume V in austenite for the cubic-to-tetragonal phase transformation. In contrast with the work of Knüpfer, Kohn and Otto (Commun. Pure Appl. Math.66 (2013), 867–904), we consider a domain with a corner and obtain a better scaling law for the minimal energy (Emin ∼ min(V2/3, V7/9)). Our predictions are in good agreement with physical experiments where nucleation of martensite is usually observed near the corners of the specimen.


1990 ◽  
Vol 117 (1) ◽  
pp. K13-K14 ◽  
Author(s):  
V. D. Kushkov ◽  
A. V. Zverlin ◽  
A. M. Zaslavskii ◽  
A. V. Melnikov

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1677 ◽  
Author(s):  
Ningning Song ◽  
Ziyuan Wang ◽  
Yan Xing ◽  
Mengfei Zhang ◽  
Peng Wu ◽  
...  

Microscopical nonuniformity of mechanical properties caused by phase transformation is one of the main reasons for the failure of the materials in engineering applications. Accurate measurement of the mechanical properties of each phase is of virtual importance, in which the traditional approach like Vickers hardness cannot accomplish, due to the large testing range. In this study, nanoindentation is firstly used to analyze the mechanical properties of each phase and demonstrate the phase transformation in thermal barrier coatings during high-temperature aging. The distribution of T-prime metastable tetragonal phase, cubic and tetragonal phase is determined by mapping mode of nanoindentation and confirmed with X-ray diffraction and scanning electron microscope observation. The results show that during 1300 °C aging, the phase transition of metastable Yttria-Stabilized Zirconia induces the quick decrease of T′ phase content and an increase of T and C phases accordingly. It is found that there are some fluctuations in the mechanical properties of individual phase during annealing. The hardness and Young’s modulus of T′ increase at first 9 h, due to the precipitation of Y3+ lean T phase and then decrease to a constant value accompanied by the precipitation of Y3+ rich C phase. The relevant property of C phases also increases a little firstly and then decreases to a constant, due to the homogenization of Y3+ content, while the hardness and Young’s modulus of T phase remain unchanged. After aging of 24h the hardness of T′, C and T phases are 20.5 GPa, 21.3 GPa and 19.1 GPa, respectively. The Young’s modulus of T′, C and T phases are 274 GPa, 275 GPa and 265 GPa, respectively. Present work reveals the availability of nanoindentation method to demonstrate the phase transformation and measure mechanical properties of composites. It also provides an efficient application for single phase identification of ceramics.


Sign in / Sign up

Export Citation Format

Share Document