Hydrogen-rich syngas produced from co-gasification of municipal solid waste and wheat straw in an oxygen-enriched air fluidized bed

Author(s):  
Jun Zhao ◽  
Dan Xie ◽  
Shuzhong Wang ◽  
Rui Zhang ◽  
Zhiqiang Wu ◽  
...  
2002 ◽  
Vol 2002.12 (0) ◽  
pp. 293-295
Author(s):  
Daijyo KIMURA ◽  
Yasunobu HAMADA ◽  
Hiroo NIKAIDO ◽  
Tadashi ITO ◽  
Takashi SHIMONASHI

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 141
Author(s):  
Zhengzhen Yao ◽  
Zhonghui Xu ◽  
Qin Shuai ◽  
Xiaoyue Chen ◽  
Zao Jiang ◽  
...  

This study aims to explore the solidification performance of municipal solid waste incineration fly ash (MSWIFA) through co-mechanical treatment with circulation fluidized bed combustion fly ash (CFBCFA). The mineral characterization, physical properties, and leaching resistance of the solidified bodies are investigated by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry-differential thermal analysis (TG-DTA), compressive strength, porosity, and leaching test, respectively. C–S–H, ettringite (AFt), and Friedel’s salt (FS) are the predominant hydrate products in the CFBCFA based solidified bodies, which are similar to the cement based solidified bodies. However, CFBCFA based solidified bodies exhibit higher compressive strength (36.7 MPa) than cement based solidified bodies (11.28 MPa), attributing to the three reasons: lower porosity and more compact internal structure of CFBCFA based solidified bodies; large amounts of Ca(OH)2 originating from MSWIFA are conducive to promoting the hydration reaction extent and compressive strength of the CFBCFA based solidified bodies; excessive Ca(OH)2 would cause compressive strength deterioration for the cement based solidified bodies. The heavy metals (Zn, Cu, Cr, Cd, and Pb) concentrations in the extraction solution of the CFBCFA based solidified bodies are far below the requirements of Chinese National Standard GB 5085.3-2007. The solidification of MSWIFA through co-mechanical treatment could be an ideal substitute for cement solidification technology.


2020 ◽  
Vol 22 (3) ◽  
pp. 836-850
Author(s):  
Astryd Viandila Dahlan ◽  
Hiroki Kitamura ◽  
Yu Tian ◽  
Hirofumi Sakanakura ◽  
Takayuki Shimaoka ◽  
...  

Energies ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1773 ◽  
Author(s):  
João Cardoso ◽  
Valter Silva ◽  
Daniela Eusébio ◽  
Paulo Brito

1984 ◽  
Vol 106 (3) ◽  
pp. 377-382 ◽  
Author(s):  
M. Igarashi ◽  
Y. Hayafune ◽  
R. Sugamiya ◽  
Y. Nakagawa ◽  
K. Makishima

Funabashi City’s Municipal Solid Waste Pyrolysis Plant is the first full-scale plant having a dual fluidized bed gasification system. The plant has the capacity of processing 4.5 × 105 kg/day of mixed municipal solid waste with a very limited emission of air, water and land pollutants. The energy is recovered as high calorific value fuel gas. Since April 1983, the plant has been in continuous operation. The purpose of this paper is to report on the system and the experience obtained during the 5 mo in which it was in operation. Data on the material balance of the pyrolysis, the analysis regarding the gas produced, the flue gas composition and the equipment used are included.


Sign in / Sign up

Export Citation Format

Share Document