Hydrogen embrittlement and hydrogen diffusion behavior in interstitial nitrogen-alloyed austenitic steel

Author(s):  
Yi Luo ◽  
Wei Li ◽  
Laizhu Jiang ◽  
Ning Zhong ◽  
Xuejun Jin
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiang Qiu ◽  
Kun Zhang ◽  
Qin Kang ◽  
Yicheng Fan ◽  
Hongyu San ◽  
...  

Purpose This paper aims to study the mechanism of hydrogen embrittlement in 12Cr2Mo1R(H) steel, which will help to provide valuable information for the subsequent hydrogen embrittlement research of this kind of steel, so as to optimize the processing technology and take more appropriate measures to prevent hydrogen damage. Design/methodology/approach The hydrogen diffusion coefficient of 12Cr2Mo1R(H) steel was measured by the hydrogen permeation technique of double electrolytic cells. Moreover, the influence of hydrogen traps in the material and experimental temperature on hydrogen diffusion behavior was discussed. The first-principles calculations based on density functional theory were used to study the occupancy of H atoms in the bcc-Fe cell, the diffusion path and the interaction with vacancy defects. Findings The results revealed that the logarithm of the hydrogen diffusion coefficient of the material has a linear relationship with the reciprocal of temperature and the activation energy of hydrogen atom diffusion in 12Cr2Mo1R(H) steel is 23.47 kJ/mol. H atoms stably exist in the nearly octahedral interstices in the crystal cell with vacancies. In addition, the solution of Cr/Mo alloy atom does not change the lowest energy path of H atom, but increases the diffusion activation energy of hydrogen atom, thus hindering the diffusion of hydrogen atom. Cr/Mo and vacancy have a synergistic effect on inhibiting the diffusion of H atoms in α-Fe. Originality/value This article combines experiments with first-principles calculations to explore the diffusion behavior of hydrogen in 12Cr2Mo1R(H) steel from the macroscopic and microscopic perspectives, which will help to establish a calculation model with complex defects in the future.


1992 ◽  
Vol 1 (1) ◽  
pp. 725-730
Author(s):  
R. C. Bowman ◽  
D. R. Torgeson ◽  
A. J. Maeland

2014 ◽  
Vol 39 (9) ◽  
pp. 4634-4646 ◽  
Author(s):  
Motomichi Koyama ◽  
Hauke Springer ◽  
Sergiy V. Merzlikin ◽  
Kaneaki Tsuzaki ◽  
Eiji Akiyama ◽  
...  

Author(s):  
Wilfried Wunderlich ◽  
Janos Lendvai ◽  
Hans-Joachim Gudladt

This article describes concepts of three features of microstructure–properties relationship, first the imaging and formation of nano-particles, then their contribution to hardness, and finally hydrogen embrittlement during fatigue. First, we briefly review the imaging modes in transmission electron microscopy (TEM) for nano-sized precipitates. The next issue is the hardening in Aluminum alloys, which is caused by GP-zones or precipitates, formed at the second step of the annealing process. After homogenization, the peak-hardness can be generally achieved by a few hours of annealing between 120°C and 200°C. Hardness measurements and equal-channel axial pressing (ECAP) showed that even at room temperature the driving force for formation of the particles is so strong that already within one hour of annealing after homogenization a remarkable hardening occurs. The third issue, hydrogen embrittlement, is caused by oxidation of pure Al surfaces produced at the crack tip during fatigue under ambient or wet moisture conditions. The cracks propagate preferentially along the precipitation free zone adjacent to grain boundaries, where hydrogen diffusion is fastest.


2020 ◽  
Vol 105 (4) ◽  
pp. 468-478 ◽  
Author(s):  
Charles A. Geiger ◽  
George R. Rossman

Abstract The nominally anhydrous, calcium-silicate garnets, grossular (Ca3Al2Si3O12), andradite (Ca3Fe23+Si3O12), schorlomite (Ca3Ti24+[Si,Fe23+]O12), and their solid solutions can incorporate structural OH-, often termed “water.” The IR single-crystal spectra of several calcium silicate garnets were recorded between 3000 and 4000 cm–1. Spectroscopic results are also taken from the literature. All spectra show various OH- stretching modes between 3500 and 3700 cm–1 and they are analyzed. Following the conclusions of Part I of this study, the garnets appear to contain local microscopic- and nano-size Ca3Al2H12O12- and Ca3Fe23+H12O12-like domains and/or clusters dispersed throughout an anhydrous “matrix.” The substitution mechanism is the hydrogarnet one, where (H4O4)4– ↔ (SiO4)4–, and various local configurations containing different numbers of (H4O4)4– groups define the cluster type. A single (H4O4) group is roughly 3 Å across and most (H4O4)-clusters are between this and 15 Å in size. This model can explain the IR spectra and also other experimental results. Various hypothetical “defect” and cation substitutional mechanisms are not needed to account for OH- incorporation and behavior in garnet. New understanding at the atomic level into published dehydration and H-species diffusion results, as well as H2O-concentration and IR absorption-coefficient determinations, is now possible for the first time. End-member synthetic and natural grossular crystals can show similar OH- “band patterns,” as can different natural garnets, indicating that chemical equilibrium could have operated during their crystallization. Under this assumption, the hydrogarnet-cluster types and their concentrations can potentially be used to decipher petrologic (i.e., P-T-X) conditions under which a garnet crystal, and the rock in which it occurs, formed. Schorlomites from phonolites contain no or very minor amounts of H2O (0.0 to 0.02 wt%), whereas Ti-bearing andradites from chlorite schists can contain more H2O (∼0.3 wt%). Different hydrogarnet clusters and concentrations can occur in metamorphic grossulars from Asbestos, Quebec, Canada. IR absorption coefficients for H2O held in hydrogrossularand hydroandradite-like clusters should be different in magnitude and this work lays out how they can be best determined. Hydrogen diffusion behavior in garnet crystals at high temperatures is primarily governed by the thermal stability of the different local hydrogarnet clusters at 1 atm.


Author(s):  
J. Toribio ◽  
D. Vergara ◽  
M. Lorenzo ◽  
J. J. Marti´n

The wall of a nuclear reactor pressure vessel can undergo a reduction of its mechanical properties due to the presence of hydrogen, a process known as hydrogen embrittlement (HE). A numerical model of hydrogen diffusion assisted by stress and strain was used in this paper to evaluate the HE process in the wall of a real nuclear reactor pressure vessel, formed by a bimaterial (stainless steel and low carbon steel). In this sense, a quantitative analysis was carried out of the influence of tempering heat treatments conditions applied to these two steels on hydrogen concentration accumulated in the nuclear reactor vessel during its operation time. To this end, the most relevant parameters of these heat treatments were considered: (i) tempering temperature and (ii) tempering time.


1993 ◽  
Vol 181 (Part_1_2) ◽  
pp. 181-186 ◽  
Author(s):  
R. C. Bowman ◽  
D. R. Torgeson ◽  
A. J. Maeland

Sign in / Sign up

Export Citation Format

Share Document