Dynamic ammonia adsorption by FAU zeolites to below 0.1 ppm for hydrogen energy applications

Author(s):  
Wei Ouyang ◽  
Songsheng Zheng ◽  
Chongjun Wu ◽  
Xiaohui Hu ◽  
Riyi Chen ◽  
...  
2021 ◽  
Vol 2125 (1) ◽  
pp. 012011
Author(s):  
Ziyi Du ◽  
Hongxu Zhan

Abstract Nowadays, many types of fuel cells have made significant progress. In 2014, they were applied to the production model Toyota’s FCHV-Adv. With their high efficiency and low pollution, fuel cells have gradually started to replace some traditional technologies in many energy applications and production industries and have become a hot topic of interest in recent years. Depending on the type of fuel, there are various types, and different fuel cells work on different principles, leading to differences in their performance. This paper lists the different fuel cells and their application scenarios in the automotive industry. In addition, the use of hydrogen in fuel cell vehicles is also a major concern. This paper briefly discusses the current hydrogen production and four different types of fuel cell vehicles and their energy management strategies. All the technical advantages of fuel cells and hydrogen energy are ultimately reflected in fuel cell vehicles, and this paper describes the current challenges and future possibilities.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1413 ◽  
Author(s):  
Gauhar Mussabek ◽  
Sergei A. Alekseev ◽  
Anton I. Manilov ◽  
Sergii Tutashkonko ◽  
Tetyana Nychyporuk ◽  
...  

Hydrogen generation rate is one of the most important parameters which must be considered for the development of engineering solutions in the field of hydrogen energy applications. In this paper, the kinetics of hydrogen generation from oxidation of hydrogenated porous silicon nanopowders in water are analyzed in detail. The splitting of the Si-H bonds of the nanopowders and water molecules during the oxidation reaction results in powerful hydrogen generation. The described technology is shown to be perfectly tunable and allows us to manage the kinetics by: (i) varying size distribution and porosity of silicon nanoparticles; (ii) chemical composition of oxidizing solutions; (iii) ambient temperature. In particular, hydrogen release below 0 °C is one of the significant advantages of such a technological way of performing hydrogen generation.


ChemPhysChem ◽  
2019 ◽  
Vol 20 (10) ◽  
pp. 1177-1215 ◽  
Author(s):  
Vasudeva Rao Bakuru ◽  
Marilyn Esclance DMello ◽  
Suresh Babu Kalidindi

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Chaonan Zhang ◽  
Robert Fuller ◽  
Iyad Hijazi ◽  

The Pd-H system has attracted extensive attention. Pd can absorb considerable amount of H at room temperature, this ability is reversible, so it is suitable for multiple energy applications. Pd-Ag alloys possess higher H permeability, solubility and narrower miscibility gap with better mechanical properties than pure Pd, but sulfur poisoning remains an issue. Pd-Cu alloys have excellent resistance to sulfur and carbon monoxide poisoning and hydrogen embrittlement, good mechanical properties, and broader temperature working environments over pure Pd, but relatively lower hydrogen permeability and solubility than pure Pd and Pd-Ag alloys. This suggests that alloying Pd with Ag and Cu to create Pd-Ag-Cu ternary alloys can optimize the overall performance and substantially lowers the cost. Thus, in this paper, we provide the first embedded atom method potentials for the quaternary hydrides Pd1-y-zAgyCuzHx. The fully analytical potentials are fitted utilizing the central atom method without performing time-consuming molecular dynamics simulations.


2012 ◽  
Vol 1 ◽  
pp. 172-179 ◽  
Author(s):  
M.R. Esquivel ◽  
E. Zelaya ◽  
J.J. Andrade-Gamboa ◽  
S. Obregón

2018 ◽  
Vol 29 (3) ◽  
pp. 034001 ◽  
Author(s):  
Frédérique Haloua ◽  
Thomas Bacquart ◽  
Karine Arrhenius ◽  
Benoît Delobelle ◽  
Hugo Ent

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1429
Author(s):  
Bei Wang ◽  
Ling Sun ◽  
Martin Schneider-Ramelow ◽  
Klaus-Dieter Lang ◽  
Ha-Duong Ngo

Safety is a crucial issue in hydrogen energy applications due to the unique properties of hydrogen. Accordingly, a suitable hydrogen sensor for leakage detection must have at least high sensitivity and selectivity, rapid response/recovery, low power consumption and stable functionality, which requires further improvements on the available hydrogen sensors. In recent years, the mature development of nanomaterials engineering technologies, which facilitate the synthesis and modification of various materials, has opened up many possibilities for improving hydrogen sensing performance. Current research of hydrogen detection sensors based on both conservational and innovative materials are introduced in this review. This work mainly focuses on three material categories, i.e., transition metals, metal oxide semiconductors, and graphene and its derivatives. Different hydrogen sensing mechanisms, such as resistive, capacitive, optical and surface acoustic wave-based sensors, are also presented, and their sensing performances and influence based on different nanostructures and material combinations are compared and discussed, respectively. This review is concluded with a brief outlook and future development trends.


Sign in / Sign up

Export Citation Format

Share Document