Rapid-convergent sliding mode proportional-integral technology with fuzzy gain scheduling for hydrogen energy applications

2017 ◽  
Vol 42 (29) ◽  
pp. 18216-18222 ◽  
Author(s):  
En-Chih Chang
Author(s):  
Tsung-Chih Lin ◽  
Yu-Chen Lin ◽  
Majid Moradi Zirkohi ◽  
Hsi-Chun Huang

In this paper, a novel direct adaptive fuzzy moving sliding mode proportional integral (PI) tracking control of a three-dimensional (3D) overhead crane which is modeled by five highly nonlinear second-order ordinary differential equations is proposed. The fast and robust position regulation and antiswing control can be achieved based on the proposed approach. Due to universal approximation theorem, fuzzy control provides nonlinear controller, i.e., fuzzy logic controllers, to perform the unknown nonlinear control actions. Simultaneously, in order to achieve fast and robust regulation and to enhance robustness in the presence of disturbance and parameter variations, moving sliding mode control (SMC) is introduced to tradeoff between reaching phase and sliding phase. Hence, the sliding surface is moved by changing the magnitude of the slope by adaptive law and varying the intercept by tuning algorithm. Simulations performed using a scaled 3D mathematical model of the crane confirm that the proposed control scheme can keep the horizontal position of the payload invariable and suppress the swing of the payload effectively during the hoisting or lowing process.


Author(s):  
Shubo Yang ◽  
Xi Wang

Limit protection, which frequently exists as an auxiliary part in control systems, is not the primary motive of control but is a necessary guarantee of safety. As in the case of aircraft engine control, the main objective is to provide the desired thrust based on the position of the throttle; nevertheless, limit protection is indispensable to keep the engine operating within limits. There are plenty of candidates that can be applied to design the regulators for limit protection. PID control with gain-scheduling technique has been used for decades in the aerospace industry. This classic approach suggests linearizing the original nonlinear model at different power-level points, developing PID controllers correspondingly, and then scheduling the linear time-invariant (LTI) controllers according to system states. Sliding mode control (SMC) is well-known with mature theories and numerous successful applications. With the one-sided convergence property, SMC is especially suitable for limit protection tasks. In the case of aircraft engine control, SMC regulators have been developed to supplant traditional linear regulators, where SMC can strictly keep relevant outputs within their limits and improve the control performance. In aircraft engine control field, we all know that the plant is a nonlinear system. However, the present design of the sliding controller is carried out with linear models, which severely restricts the valid scope of the controller. Even if the gain scheduling technique is adopted, the stability of the whole systems cannot be theoretically proved. Research of linear parameter varying (LPV) system throws light on a class of nonlinear control problems. In present works, we propose a controller design method based on the LPV model to solve the engines control problem and achieve considerable effectiveness. In this paper, we discuss the design of a sliding controller for limit protection task of aircraft engines, the plant of which is described as an LPV system instead of LTI models. We define the sliding surface as tracking errors and, with the aid of vertex property, present the stability analysis of the closed-loop system on the sliding surface. An SMC law is designed to guarantee that the closed-loop system is globally attracted to the sliding surface. Hot day (ISA+30° C) takeoff simulations based on a reliable turbofan model are presented, which test the proposed method for temperature protection and verify its stability and effectiveness.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012011
Author(s):  
Ziyi Du ◽  
Hongxu Zhan

Abstract Nowadays, many types of fuel cells have made significant progress. In 2014, they were applied to the production model Toyota’s FCHV-Adv. With their high efficiency and low pollution, fuel cells have gradually started to replace some traditional technologies in many energy applications and production industries and have become a hot topic of interest in recent years. Depending on the type of fuel, there are various types, and different fuel cells work on different principles, leading to differences in their performance. This paper lists the different fuel cells and their application scenarios in the automotive industry. In addition, the use of hydrogen in fuel cell vehicles is also a major concern. This paper briefly discusses the current hydrogen production and four different types of fuel cell vehicles and their energy management strategies. All the technical advantages of fuel cells and hydrogen energy are ultimately reflected in fuel cell vehicles, and this paper describes the current challenges and future possibilities.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1413 ◽  
Author(s):  
Gauhar Mussabek ◽  
Sergei A. Alekseev ◽  
Anton I. Manilov ◽  
Sergii Tutashkonko ◽  
Tetyana Nychyporuk ◽  
...  

Hydrogen generation rate is one of the most important parameters which must be considered for the development of engineering solutions in the field of hydrogen energy applications. In this paper, the kinetics of hydrogen generation from oxidation of hydrogenated porous silicon nanopowders in water are analyzed in detail. The splitting of the Si-H bonds of the nanopowders and water molecules during the oxidation reaction results in powerful hydrogen generation. The described technology is shown to be perfectly tunable and allows us to manage the kinetics by: (i) varying size distribution and porosity of silicon nanoparticles; (ii) chemical composition of oxidizing solutions; (iii) ambient temperature. In particular, hydrogen release below 0 °C is one of the significant advantages of such a technological way of performing hydrogen generation.


Sign in / Sign up

Export Citation Format

Share Document