Enhanced hydrogen desorption kinetics and cycle durability of amorphous TiMgVNi3-doped MgH2

Author(s):  
Chaodong Hu ◽  
Zhiwen Zheng ◽  
Tingzhi Si ◽  
Qingan Zhang
2014 ◽  
Vol 783-786 ◽  
pp. 264-269 ◽  
Author(s):  
Iya I. Tashlykova-Bushkevich ◽  
Keitaro Horikawa ◽  
Goroh Itoh

Hydrogen desorption kinetics for rapidly solidified high purity Al and Al-Cr alloy foils containing 1.0, 1.5 and 3.0 at % Cr were investigated by means of thermal desorption analysis (TDA) at a heating rate of 3.3°C/min. For the first time, it was found that oxide inclusions of Al2O3 are dominant high-temperature hydrogen traps compared with pores and secondary phase precipitates resulted in rapid solidification of Al and its alloys. The correspondent high-temperature evolution rate peak was identified to be positioned at 600°C for high purity Al and shifted to 630°C for Al-Cr alloys. Amount of hydrogen trapped by dislocations increases in the alloys depending on Cr content. Microstructural hydrogen trapping behaviour in low-and intermediate temperature regions observed here was in coincidence with previous data obtained for RS materials using thermal desorption spectroscopy (TDS). The present results on hydrogen thermal desorption evolution indicate that the effect of oxide surface layers becomes remarkable in TDA measurements and show advantages in combinations of both desorption analysis methods to investigate hydrogen desorption kinetics in materials.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3113 ◽  
Author(s):  
Cuihua An ◽  
Qibo Deng

Magnesium hydride (MgH2) has become popular to study in hydrogen storage materials research due to its high theoretical capacity and low cost. However, the high hydrogen desorption temperature and enthalpy as well as the depressed kinetics, have severely blocked its actual utilizations. Hence, our work introduced Ni@C materials with a core-shell structure to synthesize MgH2-x wt.% Ni@C composites for improving the hydrogen desorption characteristics. The influences of the Ni@C addition on the hydrogen desorption performances and micro-structure of MgH2 have been well investigated. The addition of Ni@C can effectively improve the dehydrogenation kinetics. It is interesting found that: i) the hydrogen desorption kinetics of MgH2 were enhanced with the increased Ni@C additive amount; and ii) the dehydrogenation amount decreased with a rather larger Ni@C additive amount. The additive amount of 4 wt.% Ni@C has been chosen in this study for a balance of kinetics and amount. The MgH2-4 wt.% Ni@C composites release 5.9 wt.% of hydrogen in 5 min and 6.6 wt.% of hydrogen in 20 min. It reflects that the enhanced hydrogen desorption is much faster than the pure MgH2 materials (0.3 wt.% hydrogen in 20 min). More significantly, the activation energy (EA) of the MgH2-4 wt.% Ni@C composites is 112 kJ mol−1, implying excellent dehydrogenation kinetics.


2014 ◽  
Vol 39 (2) ◽  
pp. 862-867 ◽  
Author(s):  
Sandra Kurko ◽  
Igor Milanović ◽  
Jasmina Grbović Novaković ◽  
Nenad Ivanović ◽  
Nikola Novaković

2014 ◽  
Vol 32 (3) ◽  
pp. 385-390
Author(s):  
Aysel Kantürk Figen ◽  
Bilge Coşkuner ◽  
Sabriye Pişkin

AbstractIn the present study, hydrogen desorption properties of magnesium hydride (MgH2) synthesized from modified waste magnesium chips (WMC) were investigated. MgH2 was synthesized by hydrogenation of modified waste magnesium at 320 °C for 90 min under a pressure of 6 × 106 Pa. The modified waste magnesium was prepared by mixing waste magnesium with tetrahydrofuran (THF) and NaCl additions, applying mechanical milling. Next, it was investigated by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) techniques in order to characterize its structural properties. Hydrogen desorption properties were determined by differential scanning calorimetry (DSC) under nitrogen atmosphere at different heating rates (5, 10, and 15 °C/min). Doyle and Kissenger non-isothermal kinetic models were applied to calculate energy (Ea) values, which were found equal to 254.68 kJ/mol and 255.88 kJ/mol, respectively.


2011 ◽  
Vol 347-353 ◽  
pp. 3420-3424
Author(s):  
Yang Huan Zhang ◽  
Xiao Gang Liu ◽  
Le Le Chen ◽  
Hui Ping Ren ◽  
Guo Fang Zhang ◽  
...  

The nanocrystalline and amorphous Mg2Ni-type Mg20Ni10-xMnx (x = 0, 1, 2, 3, 4) alloys were synthesized by melt-spinning technique. The structures of the as-cast and spun alloys were characterized by XRD, SEM and HRTEM. The hydrogen absorption and desorption kinetics of the alloys were measured. The results show that the substitution of Mn for Ni, instead of changing the major phase Mg2Ni, leads to the formation of Mg and MnNi phases. No amorphous phase is detected in the as-spun Mn-free alloy, but the as-spun alloys substituted by Mn display the presence of an amorphous phase, suggesting that the substitution of Mn for Ni enhances the glass forming ability of the Mg2Ni-type alloy. The hydrogen absorption capacity of the as-cast alloys first increases and then decreases with the variation of the amount of Mn substitution. The hydrogen desorption capacity of the alloys markedly increases with growing Mn content.


2014 ◽  
Vol 70 (a1) ◽  
pp. C741-C741
Author(s):  
Daniel Leiva ◽  
Santiago Figueroa ◽  
Bárbara Terra ◽  
Guilherme Zepon ◽  
Diego Lamas ◽  
...  

Hydrogen is considered the ideal energy carrier, mainly due to its heating power, the highest among all chemical fuels, and to possibility of using it in fuel cells, therefore with efficiency and producing only water as by-product. However, the development of safe and effective hydrogen storage solutions remains as a challenge of applied research. MgH2, Mg2FeH6 and Mg2CoH5complex hydrides are promising materials for hydrogen storage, avoiding the inconvenient of gaseous or liquid storage alternatives. The main attractives of these phases are their volumetric and gravimetric hydrogen capacities, their reversibility during absorption/desorption cycles and the relatively low cost. Recently, we have achieved an important control of the synthesis of Mg-based complex hydrides with nanocrystalline structure, using reactive milling (RM) under hydrogen atmosphere as processing route [1, 2]. In this study, we present new results concerning the synthesis, hydrogen storage properties and structural characterization of MgH2–Mg2CoH5nanocomposites prepared by RM. The nanocomposites were produced by milling different Mg-Co starting compositions (2:1, 3:1, 5:1, 7:1, 1:0) for 12 h in a planetary mill under 3 MPa of H2. All samples were fully hydrogenated during milling, generating different MgH2–Mg2CoH5hydride mixtures. Mg presents the tendency of agglomerate during milling, so the sample that presents more MgH2shows larger agglomerates. This behavior causes a slight increase in the temperature of hydrogen desorption and the presence of two peaks, showed by DSC analysis for those samples which presents MgH2and Mg2CoH5. Using in-situ XRD and XANES during hydrogen desorption revealed that Mg and Co tend to remain coupled forming intermetallics after the complex hydride decomposition, differently from that was observed for Mg2FeH6. This effect is correlated to the high-reversibility exhibited by the Mg2CoH5phase. Furthermore, the nanocomposites of MgH2+Mg2CoH5showed better H-absorption/desorption kinetics than the Mg2CoH5or MgH2alone, as shown by volumetric measurements. The combination of MgH2and Mg2CoH5is therefore a promising strategy to produce hydrogen storage materials, matching the good reversibility and high capacity of magnesium hydride with the lower thermal stability.


2008 ◽  
Vol 92 (23) ◽  
pp. 231910 ◽  
Author(s):  
Lei Xie ◽  
Yaoqi Li ◽  
Rong Yang ◽  
Yang Liu ◽  
Xingguo Li

Sign in / Sign up

Export Citation Format

Share Document