The Role of Cr in H Desorption Kinetics in Rapidly Solidified Al

2014 ◽  
Vol 783-786 ◽  
pp. 264-269 ◽  
Author(s):  
Iya I. Tashlykova-Bushkevich ◽  
Keitaro Horikawa ◽  
Goroh Itoh

Hydrogen desorption kinetics for rapidly solidified high purity Al and Al-Cr alloy foils containing 1.0, 1.5 and 3.0 at % Cr were investigated by means of thermal desorption analysis (TDA) at a heating rate of 3.3°C/min. For the first time, it was found that oxide inclusions of Al2O3 are dominant high-temperature hydrogen traps compared with pores and secondary phase precipitates resulted in rapid solidification of Al and its alloys. The correspondent high-temperature evolution rate peak was identified to be positioned at 600°C for high purity Al and shifted to 630°C for Al-Cr alloys. Amount of hydrogen trapped by dislocations increases in the alloys depending on Cr content. Microstructural hydrogen trapping behaviour in low-and intermediate temperature regions observed here was in coincidence with previous data obtained for RS materials using thermal desorption spectroscopy (TDS). The present results on hydrogen thermal desorption evolution indicate that the effect of oxide surface layers becomes remarkable in TDA measurements and show advantages in combinations of both desorption analysis methods to investigate hydrogen desorption kinetics in materials.

Author(s):  
Mingwang Ma ◽  
Ruiyun Wan ◽  
Yuan Wang ◽  
Yanlin Cheng ◽  
Li Liang ◽  
...  

Thermal desorption spectroscopy (TDS) was used to study the thermal desorption kinetics of zirconium hydride films, which were deposited on molybdenum substrates and thermally charged with gas phase hydrogen. The observed desorption peaks were attributed to phase transforming steps. The activation energy and pre-exponential factor for desorption kinetics was estimated as 116 kJ/mol and 8762 s−1 according to Kissinger relation, respectively. A simulation of TDS spectra was made, which showed that the desorption process followed a first order kinetics. The kinetic parameters were then utilized to predict weight loss behavior at a temperature profile. Pressure effects that can potentially reduce the desorption rate were discussed.


2020 ◽  
Vol 92 (3) ◽  
pp. 391-398 ◽  
Author(s):  
Riccardo Checchetto ◽  
Daniele Rigotti ◽  
Alessandro Pegoretti ◽  
Antonio Miotello

AbstractBiopolymer nanocomposites were prepared by solvent casting dispersing lauryl-functionalized cellulose nano-fibrils (CNF) in a poly(lactic acid) matrix (PLA). The release of residual chloroform (CHCl3) solvent molecules was studied by Thermal Desorption Spectroscopy (TDS) analysis. TDS spectra of the PLA matrix show a single desorption peak at TP = 393 K with FWHM ~10 K, compatible with a zero-order desorption kinetics. This narrow TDS peak was accurately reproduced assuming that: (i) the rate limiting step is given by the CHCl3 de-trapping from sites in the PLA matrix where residual solvent molecules form small aggregates and (ii) the activation energy for desorption linearly decreases from 1.19 eV for saturated traps to 1.11 eV when the traps occupancy by solvent molecules approaches zero. The balance energy term ϵD = −0.08 eV is due to the attractive interactions between trapped CHCl3 molecules. Adding CNF particles to the PLA matrix the zero-order peak shifts to lower temperatures and a second peak with FWHM ~60 K appears at higher temperatures. This second peak is compatible with a first-order desorption kinetics and is attributed to the release of dispersed CHCl3 molecules from trapping sites in PLA-CNF interface region. The obtained information are of interest for applications in food and electronic packaging and for the development of medical materials.


Author(s):  
Mai Itoh ◽  
Masaaki ARAIDAI ◽  
Akio OHTA ◽  
Osamu Nakatsuka ◽  
Masashi Kurosawa

Abstract To confirm the feasibility of the theoretically proposed method of forming free-standing germanene [Araidai et al., J. Appl. Phys. 128, 125301 (2020).], we have experimentally investigated hydrogen desorption properties from the hydrogen-terminated germanane (GeH) flakes. Thermal desorption spectroscopy analysis revealed that hydrogen desorption occurred during the heating under an ultrahigh vacuum environment, corresponding to mass loss of 1.0 wt%. Moreover, we have found that using an ultrahigh vacuum ambient and short-time annealing for hydrogen desorption is a key to sustain the crystal structures.


Sign in / Sign up

Export Citation Format

Share Document