Study on continuous cooling process coupled with ortho-para hydrogen conversion in plate-fin heat exchanger filled with catalyst

Author(s):  
Pan Xu ◽  
Gang Lei ◽  
Yuanyuan Xu ◽  
Jian Wen ◽  
Simin Wang ◽  
...  
2021 ◽  
Vol 2044 (1) ◽  
pp. 012076
Author(s):  
Songjun Chen ◽  
Liejun Li ◽  
Zhengwu Peng ◽  
Xiangdong Huo ◽  
Jixiang Gao

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4492
Author(s):  
Adam Kulawik ◽  
Joanna Wróbel ◽  
Alexey Mikhailovich Ikonnikov

The motivation of the presented paper is the desire to create a universal tool to analyse the process of austenite decomposition during the cooling process of various steel grades. The presented analysis concerns the application of Recurrent Artificial Neural Networks (RANN) of the Long Short-Term Memory (LSTM) type for the analysis of the transition path of the cooling curve. This type of network was selected due to its ability to predict events in time sequences. The proposed generalisation allows for the determination of the austenite transformation during the continuous cooling process for various cooling curves. As training data for the neural network, values determined from the macroscopic model based on the analysis of Continuous Cooling Transformation (CCT) diagrams were used. All relations and analyses used to build training/testing or validation sets are presented in the paper. The modelling with the use of LSTM network gives the possibility to determine the incremental changes of phase transformation (in a given time step) with the assumed changes of temperature resulting from the considered cooling rate.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 73 ◽  
Author(s):  
Wenhong Ding ◽  
Yazheng Liu ◽  
Jianxin Xie ◽  
Li Sun ◽  
Tianwu Liu

Transformation plasticity and kinetics play an essential role in the prediction of residual stresses resulting from transformation. This paper is devoted to the investigation of the influence of stress on the kinetics and transformation plasticity of ferrite for H420LA steel. It has been shown that under small external stresses, lower than the yield stress of the weaker phase, the ferrite transformation is inhibited at the beginning of the transformation in the continuous cooling process and the mechanical stabilization of austenite is observed, due to transformation hysteresis effects. This phenomenon affects the metallurgical and mechanical behaviors of the transformation progress. However, most existing models ignore these effects, leading to deviations in the description of transformation plasticity during the transformation progress. Considering the hysteresis effects, the micromechanical model for kinetics and transformation plasticity is reexamined. A general formulation of austenite decomposition kinetics accounting for these effects is developed to better describe the phase transformation under a continuous cooling process. In addition, the influence of hysteresis effects on the evolution of transformation plasticity is analyzed. Consideration of the hysteresis effects decreases the discrepancy between the calculated and experimental values. This will allow better prediction of residual stresses in the thermomechanically controlled processes.


2011 ◽  
Vol 291-294 ◽  
pp. 786-789
Author(s):  
Lian Sheng Chen ◽  
Yan Hong Leng ◽  
Yan Kai Han ◽  
Jin Ying Song

In the continuous cooling process, when the metal material austenite transition occurs, latent heat is released. Through the thermal-meter can determine the characteristics point of the phase transition. In this paper, by thermal analysis, at the cooling rate of 0.5°C•s-1, 0.8°C•s-1, 40Cr bar is tested to determine the characteristics point of the phase transition, latent heat and the heat capacity in phase transition.


2020 ◽  
Vol 39 (1) ◽  
pp. 304-316
Author(s):  
Xi Chen ◽  
Fuming Wang ◽  
Changrong Li ◽  
Jing Zhang

AbstractThe effects of the cooling rate after hot deformation on phase transformation, the microstructure of the designed nonquenched and tempered medium-carbon carbide-free bainitic steel have been investigated during the dynamic continuous cooling process. The results show that with the increase of the cooling rate, the morphology of the carbide-free bainite of the experimental steel evolves from granular bainite to lath bainite. Meanwhile, the hardness increases, and the amount of the retained austenite decreases with the increase of the cooling rate. Besides, the morphology evolution of the retained austenite from block to film is revealed by EBSD. Moreover, 0.5°C/s is considered to be the favorable cooling rate to obtain the best strength–toughness matching. Furthermore, the semi-industrial experimental results proved that the tensile strength, yield strength and Charpy impact energy were 1,298 MPa, 847 MPa and 38 J, respectively.


Sign in / Sign up

Export Citation Format

Share Document