Dynamic plastic behaviour of annular plates with transverse shear effects

2007 ◽  
Vol 34 (6) ◽  
pp. 1061-1080 ◽  
Author(s):  
J. Lellep ◽  
K. Torn
2001 ◽  
Author(s):  
N. K. Chandiramani ◽  
L. I. Librescu ◽  
C. D. Shete

Abstract The free vibration behavior of a rotating blade modeled as a laminated composite hollow (single celled) box beam is studied. The geometrically nonlinear structural model developed herein incorporates a number of non-classical effects such as anisotropy, heterogeneity, transverse shear flexibility, and warping inhibition. The centrifugal and Coriolis force field effects are also included. The main focus here being the refinement of the existing model, the traction-free boundary conditions are satisfied here in contrast to the existing model. The resulting linearized equations and numerical results based on them are presented. Results obtained for the present higher-order shearable model are compared with those of the existing first-order shearable and the non-shearable models. Tailoring studies using the present model reveal an enhancement of eigenfrequency characteristics.


1980 ◽  
Vol 47 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Norman Jones ◽  
J. Gomes de Oliveira

The response of a simply supported circular plate made from a rigid perfectly plastic material and subjected to a uniformly distributed impulsive velocity is developed herein. Plastic yielding of the material is controlled by a yield criterion which retains the transverse shear force as well as bending moments and the influence of rotatory inertia is included in the governing equations. Various equations and numerical results are presented which may be used to assess the importance of transverse shear effects and rotatory inertia for this particular problem.


Sign in / Sign up

Export Citation Format

Share Document