Transverse shear effects on buckling and postbuckling of laminated and delaminated plates

AIAA Journal ◽  
1993 ◽  
Vol 31 (1) ◽  
pp. 163-169 ◽  
Author(s):  
Hsin-Piao Chen
2001 ◽  
Author(s):  
N. K. Chandiramani ◽  
L. I. Librescu ◽  
C. D. Shete

Abstract The free vibration behavior of a rotating blade modeled as a laminated composite hollow (single celled) box beam is studied. The geometrically nonlinear structural model developed herein incorporates a number of non-classical effects such as anisotropy, heterogeneity, transverse shear flexibility, and warping inhibition. The centrifugal and Coriolis force field effects are also included. The main focus here being the refinement of the existing model, the traction-free boundary conditions are satisfied here in contrast to the existing model. The resulting linearized equations and numerical results based on them are presented. Results obtained for the present higher-order shearable model are compared with those of the existing first-order shearable and the non-shearable models. Tailoring studies using the present model reveal an enhancement of eigenfrequency characteristics.


1980 ◽  
Vol 47 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Norman Jones ◽  
J. Gomes de Oliveira

The response of a simply supported circular plate made from a rigid perfectly plastic material and subjected to a uniformly distributed impulsive velocity is developed herein. Plastic yielding of the material is controlled by a yield criterion which retains the transverse shear force as well as bending moments and the influence of rotatory inertia is included in the governing equations. Various equations and numerical results are presented which may be used to assess the importance of transverse shear effects and rotatory inertia for this particular problem.


Author(s):  
N. G. R. Iyengar ◽  
Arindam Chakraborty

Response of composite laminates under in-plane compressive or shear loadings is of interest to the analyst and designers. Since they are thin, they are prone to instability under in-plane loads. Transverse shear effects are important even for thin laminates since elastic modulus and shear modulus are independent properties. For very thick laminates neglecting transverse shear effects leads to completely erroneous results. A number of different theories have been suggested by different investigators to account for transverse shear effects. In this investigation, an attempt has been made to take into account transverse shear effects for the stability analysis of moderately thick/very thick composite laminates under in-plane compressive and shear loading using a “SIMPLE HIGHER ORDER SHEAR DEFORMATION THEORY” based on four unknown displacements instead of five which is commonly used for most of the other higher order theories. A C1 continuous shear flexible finite element based on the proposed HSDT is developed using the Hermite cubic rectangular element. The analytical results obtained have been compared with the available results in literature. Effect of various parameters like aspect ratio, thickness to side ratio, fiber orientation and material properties have been studied in detail.


Sign in / Sign up

Export Citation Format

Share Document