scholarly journals Experimental and numerical assessment of stress wave attenuation of metaconcrete rods subjected to impulsive loads

Author(s):  
Cheng Xu ◽  
Wensu Chen ◽  
Hong Hao ◽  
Kaiming Bi ◽  
Thong M. Pham
2019 ◽  
Vol 11 (02) ◽  
pp. 1950019 ◽  
Author(s):  
Lin Gan ◽  
He Zhang ◽  
Cheng Zhou ◽  
Lin Liu

Rotating scanning motor is the important component of synchronous scanning laser fuze. High emission overload environment in the conventional ammunition has a serious impact on the reliability of the motor. Based on the theory that the buffer pad can attenuate the impact stress wave, a new motor buffering Isolation Method is proposed. The dynamical model of the new buffering isolation structure is established by ANSYS infinite element analysis software to do the nonlinear impact dynamics simulation of rotating scanning motor. The effectiveness of Buffering Isolation using different materials is comparatively analyzed. Finally, the Macht hammer impact experiment is done, the results show that in the experience of the 70,000[Formula: see text]g impact acceleration, the new buffering Isolation method can reduce the impact load about 15 times, which can effectively alleviate the plastic deformation of rotational scanning motor and improve the reliability of synchronization scanning system. A new method and theoretical basis of anti-high overload research for Laser Fuze is presented.


Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 545
Author(s):  
Xiao Yu ◽  
Li Chen ◽  
Qin fang ◽  
Wuzheng Chen

The stress wave attenuation and energy absorption in the coral sand were respectively investigated. A series of experiments were carried out by using a new methodology with an improved split Hopkinson pressure bar (SHPB). Four types of coral sand, i.e., particle sizes of 1.18–0.60 mm, 0.60–0.30 mm, 0.30–0.15 mm, and 0.15–0.075 mm, were carefully sieved and tested. Significant effects of coral sand on stress wave attenuation and energy absorption were observed. Correlation between stress wave attenuation and energy absorption of coral sand was validated. Conclusions on particle size effect of stress wave attenuation and energy absorption, which support each other, were drawn. There existed a common critical stress zone for coral sand with different particle sizes. When the stress below this zone, sand with small particle sizes attenuates stress wave better and absorb energy more; when the stress beyond this zone, sand with larger particle sizes behave better on stress wave attenuation and energy absorption.


2018 ◽  
Vol 878 ◽  
pp. 35-40
Author(s):  
Fei Peng ◽  
Zhi Guang Yang ◽  
Li Peng Wang

The attenuation of stress wave induced by impact load in multi-layered thin cylindrical rods has been investigated and analyzed. Firstly, based on stress wave propagation theory, the one dimension solution of the response of stress wave in three-layered media has been given. Secondly, a three-layered thin cylindrical rod has been established through FEM, and the propagation and attenuation of stress wave in it has been analyzed. The analytical and numerical results showed that the stress wave attenuation could be achieved by using multi-layered media.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chengcheng Luo ◽  
Shaowu Ning ◽  
Zhanli Liu ◽  
Xiang Li ◽  
Zhuo Zhuang

Purpose This paper aims to propose a design method for attenuating stress waves pressure using soft matrix embedded with particles. Design/methodology/approach Based on the phononic crystal theory, the particle composed of hard core and soft coating can form a spring oscillator structure. When the frequency of the wave is close to the resonance frequency of the spring oscillator, it can cause the resonance of the particle and absorb a lot of energy. In this paper, the resonant phononic crystal with three phases, namely, matrix, particle core and coating, is computationally designed to effectively mitigate the stress wave with aperiodic waveform. Findings The relationship between the center frequency and width of the bandgap and the geometric and physical parameters of particle core are discussed in detail, and the trend of influence is analyzed and explained by a spring oscillator model. Increasing the radius of hard core could effectively enhance the bandgap width, thus enhancing the effect of stress wave attenuation. In addition, it is found that when the wave is in the bandgap, adding viscosity into the matrix will not further enhance the stress attenuation effect, but will make the stress attenuation effect of the material worse because of the competition between viscous dissipation mechanism and resonance mechanism. Research limitations/implications This study will provide a reference for the design of stress wave protection materials with general stress waves. Originality/value This study proposes a design method for attenuating stress waves pressure using soft matrix embedded with particles.


2012 ◽  
Vol 31 (2) ◽  
pp. 261-266 ◽  
Author(s):  
Kedar S. Pandya ◽  
Lokesh Dharmane ◽  
Jayaram R. Pothnis ◽  
G. Ravikumar ◽  
N.K. Naik

Sign in / Sign up

Export Citation Format

Share Document