Impact Load Buffering Method Based on Stress Wave Attenuation Principle

2019 ◽  
Vol 11 (02) ◽  
pp. 1950019 ◽  
Author(s):  
Lin Gan ◽  
He Zhang ◽  
Cheng Zhou ◽  
Lin Liu

Rotating scanning motor is the important component of synchronous scanning laser fuze. High emission overload environment in the conventional ammunition has a serious impact on the reliability of the motor. Based on the theory that the buffer pad can attenuate the impact stress wave, a new motor buffering Isolation Method is proposed. The dynamical model of the new buffering isolation structure is established by ANSYS infinite element analysis software to do the nonlinear impact dynamics simulation of rotating scanning motor. The effectiveness of Buffering Isolation using different materials is comparatively analyzed. Finally, the Macht hammer impact experiment is done, the results show that in the experience of the 70,000[Formula: see text]g impact acceleration, the new buffering Isolation method can reduce the impact load about 15 times, which can effectively alleviate the plastic deformation of rotational scanning motor and improve the reliability of synchronization scanning system. A new method and theoretical basis of anti-high overload research for Laser Fuze is presented.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yu Bai ◽  
Li Sun ◽  
Chenhui Wei

High-energy gas fracturing (HEGF) and gas fracturing (GF) are considered to be efficient to enhance the permeability of unconventional gas reservoir. The existing models for HEGF mainly focus on the dynamic loading of stress wave or static loading of gas pressurization, rather than on the combined actions of them. Studies on the combination of HEGF and GF (HEGF+GF) are also few. In this paper, a damage-based stress wave propagation-static mechanical equilibrium-gas flow coupling model is established. Numerical model and determination of mesomechanical parameters in finite element analysis are described in detail. Numerical simulations on crack evolution under HEGF, GF, and HEGF+GF are carried out, and the impact of in situ stress conditions on crack evolution is discussed further. A total of 11 cracks with length of 2.3-4 m in HEGF, 4 main cracks with length of 6.5–8 m in GF, and 11 radial cracks with length of 2–11.5 m in HEGF+GF are produced. Many radial cracks around the borehole are formed in HEGF and extended further in GF. The crustal stress difference is disadvantageous for crack complexity. This study can provide a reference for the application of HEGF+GF in unconventional gas reservoirs.


Author(s):  
Robert W. Bielenberg ◽  
John D. Rohde ◽  
John D. Reid

In recent years, NASCAR and the Indy Racing League have improved the safety of their racetracks through the installation of the Steel And Foam Energy Reduction barrier (SAFER). The new barrier consists of a high-strength, tubular steel skin that distributes the impact load to energy-absorbing foam cartridges in order to reduce the severity of the impact, extends the impact event, and provides the occupant of the race car additional protection. During installation of the SAFER barrier, the designers realized that certain race tracks were designed with the emergency track exit in the outside of the corner. Because the SAFER barrier needed to be installed in these corners, a gate mechanism had to be designed for the barrier that would provide access to the track while retaining the safety performance of the system. Full-scale crash testing of the first SAFER gate design showed that the gate did not posses sufficient capacity to handle the loads experienced during a worst-case impact scenario. Non-linear finite element analysis was then used to redesign the gate mechanism. The original gate design was simulated using LS-DYNA in order to validate the computational model. Modifications to increase the capacity of the gate mechanism were designed and analyzed until suitable results were obtained through simulation. Finally, the redesigned SAFER gate was successfully full-scale crash tested.


2018 ◽  
Vol 225 ◽  
pp. 06011 ◽  
Author(s):  
Ismail Ali Bin Abdul Aziz ◽  
Daing Mohamad Nafiz Bin Daing Idris ◽  
Mohd Hasnun Arif Bin Hassan ◽  
Mohamad Firdaus Bin Basrawi

In high-speed gear drive and power transmission, system impact failure mode always occurs due to the sudden impact and shock loading during the system in running. Therefore, study on the amount of impact energy that can be absorbed by a gear is vital. Impact test equipment has been designed and modelled for the purpose to study the impact energy on gear tooth. This paper mainly focused on Finite Element Analysis (FEA) of impact energy that occurred during simulation involving the impact test equipment modelling. The simulation was conducted using Abaqus software on critical parts of the test equipment to simulate the impact event and generate impact data for analysis. The load cell in the model was assumed to be free fall at a certain height which gives impact load to the test gear. Three different type of material for the test gear were set up in this simulation. Results from the simulation show that each material possesses different impact energy characteristic. Impact energy values increased along with the height of load drop. AISI 1040 were found to be the toughest material at 3.0m drop that could withstand up to 44.87N.m of impact energy. These data will be used to validate data in physical experiments in further study.


2018 ◽  
Vol 878 ◽  
pp. 35-40
Author(s):  
Fei Peng ◽  
Zhi Guang Yang ◽  
Li Peng Wang

The attenuation of stress wave induced by impact load in multi-layered thin cylindrical rods has been investigated and analyzed. Firstly, based on stress wave propagation theory, the one dimension solution of the response of stress wave in three-layered media has been given. Secondly, a three-layered thin cylindrical rod has been established through FEM, and the propagation and attenuation of stress wave in it has been analyzed. The analytical and numerical results showed that the stress wave attenuation could be achieved by using multi-layered media.


2010 ◽  
Vol 163-167 ◽  
pp. 327-331 ◽  
Author(s):  
Liang Zheng ◽  
Zhi Hua Chen

Finite element model of both the single-layer Schwedler reticulated dome with the span of 50m and a Cuboid impactor were developed, incorporating ANSYS/LS-DYNA. PLASTIC_KINEMATIC (MAT_003) material model which takes stain rate into account was used to simulate steel under impact load. The automatic point to surface contact (NODES TO SURFACE) was applied between the dome and impact block. Three stages of time history curve of the impact force on the apex of the single-layer Scheduler reticulated dome including the impact stage, stable stalemate stage, the decaying stage were generalized according to its dynamic response. It must be pointed out that the peak of the impact force of the single-layer reticulated dome increase with the increase of the weight and the velocity of the impact block, but the change of the velocity of the impact block is more sensitive than the change of weight of the impact block for the effect of the peak of the impact force, and a platform value of the impact force of the single-layer reticulated dome change near a certain value, and the duration time of the impact gradually increase. Then four stages of time history curve of the impact displacement were proposed according to the dynamic response of impact on the apex of the single-layer reticulated dome based on numerical analysis. Four stages include in elastic deformation stage, plastic deformation stage, elastic rebound stage, free vibration stage in the position of the residual deformation.


2013 ◽  
Vol 535-536 ◽  
pp. 501-504
Author(s):  
Mohd Azman Yahaya ◽  
Dong Ruan ◽  
Guo Xing Lu

Similar blast loading characteristics can be obtained using impact of aluminium foam projectiles, which enables blast tests to be mimicked in a laboratory scale and in a safer environment. The purpose of this study is to determine the back-face deflection history of aluminium sandwich panels experimentally by aids of a laser displacement meter when panels are subjected to the impact of metal foam projectiles. This information was usually determined using finite element analysis (FEA) due to the difficulty in the experiment. The projectiles are cylindrical ALPORAS aluminium foam with diameter of 37 mm, length of 50 mm and nominal relative density of 10%. The sandwich panels consist of two 1 mm aluminium face-sheets and an aluminium honeycomb as the core. There are five different core configurations with a brand name of HEXCEL. The projectiles are fired towards the centre of the sandwich panels at different velocities using a gas gun. During the tests, a laser optical displacement measuring device is used to record the history of the back-face deflection experimentally. The deflection of the back-face is found to reach the maximum before coming to rest at a smaller value. The final back-face deflections of the sandwich panels show exponential relationship with the projectile impulse. The final deflections are compared with the deflection of monolithic plates with equal mass. The sandwich panels deflect less than the monolithic plate with an equal mass up to a critical value but continue to increase significantly afterwards. Care should be taken when using sandwich panels as protective structures against foam projectiles as beyond this point, the monolithic plates outperform the sandwich panels in absorbing the impact load.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Awel Momhur ◽  
Y. X. Zhao ◽  
Liwen Quan ◽  
Sun Yazhou ◽  
Xialong Zou

The widespread faults that occur in railway wheels and can cause a massive dynamic impact are the wheel tread flat. The current work considered changes in vehicle speed or wheel radius deviation and studied the dynamic impact load. The modal technique for the impact evaluation induced by the wheel flat was proposed via the finite element analysis (FEA) software package ANSYS, integrated into a multibody dynamics model of the high-speed train CRH2A (EMU) through SIMPACK. The irregularity track line has developed and depends on the selected simulation data points. Additionally, a statistical approach is designed to analyze the dynamic impact load response and effect and consider different wheel flat lengths and vehicle speeds. The train speed influence on the flat size of the vertical wheel-rail impact response and the statistical approach are discussed based on flexible, rigid wheelsets. The results show that the rigid wheel flat has the highest vertical wheel impact load and is more significant than the flexible wheel flat force. The consequences suggest that the wheelset flexibility can significantly improve vertical acceleration comparably to the rigid wheel flats. In addition, the rendering of the statistical approach shows that the hazard rate, PDF, and CDF influence increase when the flat wheel length increases.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaohua Ding ◽  
Xiang Lu ◽  
Wei Zhou ◽  
Xuyang Shi ◽  
Boyu Luan ◽  
...  

Based on the split Hopkinson pressure bar (SHPB) test system, dynamic impact tests of coal specimens under different impact pressures were carried out to study the relationship between the impact load and the size of crushed lump coal. Based on the theory of stress wave attenuation, the relationship between the blasting impact load in a single-hole blasting area of a coal seam and the load applied in an impact failure test of a coal specimen in the laboratory was established. According to the characteristics of the fragmentation distribution of the coal specimens destroyed under a laboratory impact load and the requirement of the minimum cost control of coal blasting in an open-pit coal mine, the fragmentation size range was divided into three groups: large-diameter, medium-diameter, and powder particles. Based on this range, the variation rule of the mass percentage of coal fragments with impact pressure was obtained. Established on the evaluation principle of the blasting effect in an open-pit coal mine, a good impact fragmentation effect was obtained. The good pressure range is 0.30 MPa≤P<0.90 MPa.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 163
Author(s):  
Akihiro Matsuda ◽  
Shigeru Kawahara

In this paper, mechanical properties of thermoplastic elastomers were investigated to expand the applicability of thermoplastic elastomers to the impact load reduction for the sports equipment. The thermoplastic elastomers show both thermoplastic and elastomeric properties. These are expected to apply to the impact load reduction in sports equipment due to good processability and less-smell. In this study, thermoplastic elastomers were applied for monotonic and cyclic tensile loading tests. The thermoplastic elastomer (TPE) materials in this study were newly developed for the specific purpose of impact load reduction. The nonlinear hyperelastic model considering the viscosity and damage model was applied to the tensile loading test results. finite element analysis (FEA) results of TPE specimens with periodic geometric shapes to reduce impact load were investigated.


2006 ◽  
Vol 2 (1) ◽  
pp. 22-31 ◽  
Author(s):  
Hua Shan ◽  
Jianzhong Su ◽  
Jiansen Zhu ◽  
Leon Xu

This article focuses on a realistic mathematical model for multiple impacts of a rigid body to a viscoelastic ground and its comparison to theoretic results. The methodology is used to study impact on an electronic device. When an electronic device drops to the floor at an uneven level, the rapid successions of impact sequence are important for their shock response to internal structure of the devices. A three-dimensional, continuous contact, computational impact model has been developed to simulate a sequence of multiple impacts of a falling rigid body with the ground. The model simulates the impact procedure explicitly and thus is capable of providing detailed information regarding impact load, impact contact surface, and the status of the body during the impact. For the purposes of model verification, we demonstrate the numerical simulation of a falling rod problem, in which the numerical results are in good agreement with the analytic solutions based on discrete contact dynamics impact models. It is indicated by the numerical experiments that simultaneous impacts occurred to multiple locations of the body and that subsequent impacts might be larger than initial ones due to different angles of impact. The differential equation-based computational model is shown to be realistic and efficient in simulating impact sequence and laid a foundation for detailed finite element analysis of the interior impact response of an electronic device.


Sign in / Sign up

Export Citation Format

Share Document