Research on Degree of Freedom of Secondary Mirror Truss Mechanism Based on Screw Theory and Geometry Algebra Applied on Large Telescopes

Optik ◽  
2020 ◽  
Vol 224 ◽  
pp. 165474
Author(s):  
Rui Wang ◽  
Fuguo Wang ◽  
Liang Hao ◽  
Yuyan Cao ◽  
Xueqian Sun
2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Yongquan Li ◽  
Yang Zhang ◽  
Lijie Zhang

Abstract The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms, or using screw theory to perform multiple getting intersection and union to complete type synthesis. The number of redundant parallel mechanisms obtained by these two methods is limited. In this paper, based on Grassmann line geometry and Atlas method, a novel and effective method for type synthesis of redundant actuated parallel mechanisms (PMs) with closed-loop units is proposed. Firstly, the degree of freedom (DOF) and constraint line graph of the moving platform are determined successively, and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph, and a branch constraint allocation scheme is formulated based on the allocation criteria. Secondly, a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units. Finally, the branch chains that meet the requirements of branch chains configuration criteria and F&C (degree of freedom & constraint) line graph are assembled. In this paper, two types of 2 rotational and 1 translational (2R1T) redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational (2T1R) redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples, and 238, 92 and 15 new configurations were synthesized. All the mechanisms contain closed-loop units, and the mechanisms and the actuators both have good symmetry. Therefore, all the mechanisms have excellent comprehensive performance, in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled. The instantaneous analysis shows that all mechanisms are not instantaneous, which proves the feasibility and practicability of the method.


1983 ◽  
Vol 105 (1) ◽  
pp. 23-27 ◽  
Author(s):  
K. Sugimoto ◽  
J. Duffy

Many kinds of robot arms with five degrees of freedom are widely used in industry for arc welding, spray painting, assembling etc. It is necessary to be able to compute joint displacements when such devices are computer controlled. A solution to this problem is presented and the analysis is illustrated by a numerical example using the most common industrial robot with five axes. Further, special cases are discussed using screw theory.


Author(s):  
Werner W. P. J. van de Sande ◽  
Just L. Herder

Parasitic motion is undesired in precision mechanisms, it causes unwanted kinematics. These erroneous motions are especially apparent in compliant mechanisms. Usually an analysis of parasitic motion is only valid for one type of mechanism. Kinematic information is imbedded in the compliance matrix of any mechanism; an eigenscrew decomposition expresses this kinematic information as screws. It uses screw theory to identify the lines along which a force yields a parallel translation and a rotation yields a parallel moment. These lines are called eigenwrenches and eigentwists. Any other load on the compliant mechanism will lead to parasitic motion. This article introduces two parasitic motion metrics using eigenscrew decomposition: the parasitic resultant from an applied screw and the deviation of an actual degree of freedom from a desired degree of freedom. These metrics are applicable to all compliant mechanism and allow comparison between two compliant mechanisms. These metrics are applied to some common compliant mechanisms as an example.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Wen-ao Cao ◽  
De Zhang ◽  
Huafeng Ding

Abstract This paper presents a novel two-layer and two-loop spatial deployable linkage which can only accurately output vertical straight-line motion. First, the degree-of-freedom (DOF) of the linkage is analyzed based on structure decomposition and screw theory, and the characteristic of the straight-line motion of the linkage is verified by checking the output twist of the end platform. Then, the kinematic model of the mechanism is established based on the conditions of the straight-line motion and the single DOF. Finally, several potentially typical applications of the linkage are exhibited. The straight-line linkage has relatively simple joint layouts and kinematics model and can be used as a deployable unit to construct some special deployable mechanisms.


2017 ◽  
Author(s):  
Mingxin An ◽  
Shuyan Xu ◽  
Jihong Dong ◽  
Lihao Zhang

2018 ◽  
Vol 47 (7) ◽  
pp. 718007
Author(s):  
杨维帆 Yang Weifan ◽  
曹小涛 Cao Xiaotao ◽  
张 彬 Zhang Bin ◽  
赵伟国 Zhao Weiguo ◽  
林冠宇 Lin Guanyu

2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Chenhan Guang ◽  
Yang Yang

The radial folding ratio of single-vertex multicrease rigid origami, from the folded configuration to the unfolded configuration, is satisfactory. In this study, we apply two approaches to add nonzero thickness for this kind of origami and identify different geometrical characteristics. Then, the model of the secondary folding origami, which can help to further decrease the folding ratio, is constructed. We apply the method of constraining the edges of the panels on prescribed planes to geometrically obtain the kinematic model. Based on the kinematic model and the screw theory, the nonzero thickness origami is transformed into the deployable mechanism with one degree-of-freedom (1DOF). Other similar mechanisms can be derived based on this basic configuration. The computer-aided design examples are presented to indicate the feasibility.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yong Xu ◽  
Zheng Liang ◽  
Jiali Liu

This paper proposes the concept of full configuration state of metamorphic mechanism. Based on the concept, the configuration synthesis principle of metamorphic parallel mechanism is put forward. Firstly, a metamorphic parallel mechanism in full configuration state is synthesized, and then full configuration state evolves into a specific configuration state by increasing constraints or decreasing degrees of freedom. A reconfigurable moving platform based on the triple symmetric Bricard spatial closed-loop mechanism with a single degree of freedom is proposed. Based on this, a new method for switching motion configuration states of the metamorphic parallel mechanism is constructed. According to the configuration synthesis principle presented above, a novel metamorphic parallel mechanism that can switch between three- and four-degree-of-freedom is synthesized, and then the triple symmetric Bricard spatial closed-loop mechanism is used as the reconfigurable moving platform (that is, the reconfigurable foot of a walking robot) of the metamorphic mechanism, and thus, a novel metamorphic parallel leg mechanism is created. The screw theory is used to verify the degrees of freedom of the new type of metamorphic parallel leg. The proposed metamorphic parallel leg mechanism is expected to improve flexibility and adaptability of walking robots in unstructured environment.


2016 ◽  
Vol 836 ◽  
pp. 48-53 ◽  
Author(s):  
Latifah Nurahmi ◽  
Stéphane Caro

This paper introduces a methodology for the type synthesis of two degree-of-freedom hybrid translational manipulators with identical legs. The type synthesis method is based upon the screw theory. Three types of two degree-of-freedom hybrid translational manipulators with identical legs are identified based upon their wrench decomposition. Each leg of the manipulators is composed of a proximal module and a distal module mounted in series. The assembly conditions and the validity of the actuation scheme are also defined. Eventually, some novel two degree-of-freedom hybrid translational manipulators are synthesized with the proposed procedure.


Optik ◽  
2021 ◽  
Vol 227 ◽  
pp. 165520
Author(s):  
Rui Wang ◽  
Fuguo Wang ◽  
Liang Hao ◽  
Yuyan Cao ◽  
Xueqian Sun

Sign in / Sign up

Export Citation Format

Share Document