Analysis of Five-Degree-of-Freedom Robot Arms

1983 ◽  
Vol 105 (1) ◽  
pp. 23-27 ◽  
Author(s):  
K. Sugimoto ◽  
J. Duffy

Many kinds of robot arms with five degrees of freedom are widely used in industry for arc welding, spray painting, assembling etc. It is necessary to be able to compute joint displacements when such devices are computer controlled. A solution to this problem is presented and the analysis is illustrated by a numerical example using the most common industrial robot with five axes. Further, special cases are discussed using screw theory.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yong Xu ◽  
Zheng Liang ◽  
Jiali Liu

This paper proposes the concept of full configuration state of metamorphic mechanism. Based on the concept, the configuration synthesis principle of metamorphic parallel mechanism is put forward. Firstly, a metamorphic parallel mechanism in full configuration state is synthesized, and then full configuration state evolves into a specific configuration state by increasing constraints or decreasing degrees of freedom. A reconfigurable moving platform based on the triple symmetric Bricard spatial closed-loop mechanism with a single degree of freedom is proposed. Based on this, a new method for switching motion configuration states of the metamorphic parallel mechanism is constructed. According to the configuration synthesis principle presented above, a novel metamorphic parallel mechanism that can switch between three- and four-degree-of-freedom is synthesized, and then the triple symmetric Bricard spatial closed-loop mechanism is used as the reconfigurable moving platform (that is, the reconfigurable foot of a walking robot) of the metamorphic mechanism, and thus, a novel metamorphic parallel leg mechanism is created. The screw theory is used to verify the degrees of freedom of the new type of metamorphic parallel leg. The proposed metamorphic parallel leg mechanism is expected to improve flexibility and adaptability of walking robots in unstructured environment.


2012 ◽  
Vol 433-440 ◽  
pp. 6683-6687
Author(s):  
Shu Hua Sun

The terminal link of serial robot has six degrees of freedom at most. This paper presents another method based on the screw theory and kinematics output matrix, which can conveniently calculate the degree of freedom of terminal link about serial robot, and meanwhile lay good foundation for researching the parallel robot.


2019 ◽  
Vol 25 ◽  
pp. 01010
Author(s):  
Hao Zhou

With the continuous development of industrial automation, the demand for industrial robots in the manufacturing field is gradually increasing. In order to meet the needs of different occasions and functions, the planning of the trajectory of the robot becomes the research direction of the six-degree-of-freedom robot. The research object of this paper is a six-degree-of-freedom industrial robot. According to engineering needs, a structure of a handling robot is designed. The kinematics of the robot and its trajectory planning are studied, and the simulation analysis is made.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012110
Author(s):  
V F Filaretov ◽  
A S Gubankov ◽  
I V Gornostaev

Abstract The paper is devoted to preservation of dynamic control accuracy of working tools of multilink manipulators when they move along arbitrary spatial trajectories, taking into account the design limits in all degrees of freedom and special cases of position of their links. Preservation of control accuracy is proposed to be ensured by eliminating reach of all degrees of freedom of the manipulators to the limits and to indicated special positions, characterized by ambiguity in solving the inverse kinematic problems of the manipulators, as well as excluding the reach of their working tools to boundaries of working area due to use of a redundant degree of freedom when approaching indicated undesirable positions. The performed simulation has confirmed efficiency of the proposed method.


Author(s):  
Marc J.C. de Jong ◽  
P. Emile S.J. Asselbergs ◽  
Max T. Otten

A new step forward in Transmission Electron Microscopy has been made with the introduction of the CompuStage on the CM-series TEMs: CM120, CM200, CM200 FEG and CM300. This new goniometer has motorization on five axes (X, Y, Z, α, β), all under full computer control by a dedicated microprocessor that is in communication with the main CM processor. Positions on all five axes are read out directly - not via a system counting motor revolutions - thereby providing a high degree of accuracy. The CompuStage enters the octagonal block around the specimen through a single port, allowing the specimen stage to float freely in the vacuum between the objective-lens pole pieces, thereby improving vibration stability and freeing up one access port. Improvements in the mechanical design ensure higher stability with regard to vibration and drift. During stage movement the holder O-ring no longer slides, providing higher drift stability and positioning accuracy as well as better vacuum.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3740
Author(s):  
Olafur Oddbjornsson ◽  
Panos Kloukinas ◽  
Tansu Gokce ◽  
Kate Bourne ◽  
Tony Horseman ◽  
...  

This paper presents the design, development and evaluation of a unique non-contact instrumentation system that can accurately measure the interface displacement between two rigid components in six degrees of freedom. The system was developed to allow measurement of the relative displacements between interfaces within a stacked column of brick-like components, with an accuracy of 0.05 mm and 0.1 degrees. The columns comprised up to 14 components, with each component being a scale model of a graphite brick within an Advanced Gas-cooled Reactor core. A set of 585 of these columns makes up the Multi Layer Array, which was designed to investigate the response of the reactor core to seismic inputs, with excitation levels up to 1 g from 0 to 100 Hz. The nature of the application required a compact and robust design capable of accurately recording fully coupled motion in all six degrees of freedom during dynamic testing. The novel design implemented 12 Hall effect sensors with a calibration procedure based on system identification techniques. The measurement uncertainty was ±0.050 mm for displacement and ±0.052 degrees for rotation, and the system can tolerate loss of data from two sensors with the uncertainly increasing to only 0.061 mm in translation and 0.088 degrees in rotation. The system has been deployed in a research programme that has enabled EDF to present seismic safety cases to the Office for Nuclear Regulation, resulting in life extension approvals for several reactors. The measurement system developed could be readily applied to other situations where the imposed level of stress at the interface causes negligible material strain, and accurate non-contact six-degree-of-freedom interface measurement is required.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Yongquan Li ◽  
Yang Zhang ◽  
Lijie Zhang

Abstract The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms, or using screw theory to perform multiple getting intersection and union to complete type synthesis. The number of redundant parallel mechanisms obtained by these two methods is limited. In this paper, based on Grassmann line geometry and Atlas method, a novel and effective method for type synthesis of redundant actuated parallel mechanisms (PMs) with closed-loop units is proposed. Firstly, the degree of freedom (DOF) and constraint line graph of the moving platform are determined successively, and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph, and a branch constraint allocation scheme is formulated based on the allocation criteria. Secondly, a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units. Finally, the branch chains that meet the requirements of branch chains configuration criteria and F&C (degree of freedom & constraint) line graph are assembled. In this paper, two types of 2 rotational and 1 translational (2R1T) redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational (2T1R) redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples, and 238, 92 and 15 new configurations were synthesized. All the mechanisms contain closed-loop units, and the mechanisms and the actuators both have good symmetry. Therefore, all the mechanisms have excellent comprehensive performance, in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled. The instantaneous analysis shows that all mechanisms are not instantaneous, which proves the feasibility and practicability of the method.


2015 ◽  
Vol 35 (4) ◽  
pp. 341-347 ◽  
Author(s):  
E. Rouhani ◽  
M. J. Nategh

Purpose – The purpose of this paper is to study the workspace and dexterity of a microhexapod which is a 6-degrees of freedom (DOF) parallel compliant manipulator, and also to investigate its dimensional synthesis to maximize the workspace and the global dexterity index at the same time. Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Design/methodology/approach – Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Findings – It has been shown that the proposed procedure for the workspace calculation can considerably speed the required calculations. The optimization results show that a converged-diverged configuration of pods and an increase in the difference between the moving and the stationary platforms’ radii cause the global dexterity index to increase and the workspace to decrease. Originality/value – The proposed algorithm for the workspace analysis is very important, especially when it is an objective function of an optimization problem based on the search method. In addition, using screw theory can simply construct the homogeneous Jacobian matrix. The proposed methodology can be used for any other micromanipulator.


Three basic models of the intracrystalline sorbed state are discussed: a localized phase, a mobile phase possessing two translational degrees of freedom, and a mobile phase with one translational degree of freedom. The isotherm and entropy of each of these models have been investigated for the ideal phase, and where possible the influence of sorbate-sorbate interactions has been considered. Expressions for the molal and differential entropies of each model are given as a function of sorbate concentration. The method of comparing theoretical isotherms and entropies with experimental observations is outlined.


2022 ◽  
Vol 73 ◽  
pp. 102245
Author(s):  
Shintaro Iwamura ◽  
Yoshiki Mizukami ◽  
Takahiro Endo ◽  
Fumitoshi Matsuno

Sign in / Sign up

Export Citation Format

Share Document