Design of narrow bandwidth Si3N4 stressor cladded cascaded IBG filter

Optik ◽  
2022 ◽  
pp. 168564
Author(s):  
Sneha Kumari ◽  
Sumanta Gupta
Keyword(s):  
2002 ◽  
Vol 727 ◽  
Author(s):  
A. M. Mazzone

AbstractFull Potential Linearized Augmented Plane Wave calculations have been performed for epitaxial multilayers formed by the noble metals Ag and Cu with a thickness n up to 10 layers. The multilayers have a fcc lattice and are pure or compositionally modulated with a structure of the type Agn Cun or (AgCu)n. For n in the range 2,3 the density of states, evaluated at paramagnetic level, exhibits a sharp reduction of the bandwidth which is consistent with the reduced coordination of these structures. For n ≤ 5 the density of states in the central layers converges to the bulk value while the outer layers retain the narrow bandwidth found at n=2. Due to the absence of charge intermixing and hybridization, these features are shared by multilayers of all composition.


2012 ◽  
Vol 9 (8) ◽  
pp. 587-590 ◽  
Author(s):  
W Zhou ◽  
D Y Shen ◽  
Y S Wang ◽  
J Y Long ◽  
Y An

Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 655-665
Author(s):  
Stephanie C. Malek ◽  
Adam C. Overvig ◽  
Sajan Shrestha ◽  
Nanfang Yu

AbstractActively tunable and reconfigurable wavefront shaping by optical metasurfaces poses a significant technical challenge often requiring unconventional materials engineering and nanofabrication. Most wavefront-shaping metasurfaces can be considered “local” in that their operation depends on the responses of individual meta-units. In contrast, “nonlocal” metasurfaces function based on the modes supported by many adjacent meta-units, resulting in sharp spectral features but typically no spatial control of the outgoing wavefront. Recently, nonlocal metasurfaces based on quasi-bound states in the continuum have been shown to produce designer wavefronts only across the narrow bandwidth of the supported Fano resonance. Here, we leverage the enhanced light-matter interactions associated with sharp Fano resonances to explore the active modulation of optical spectra and wavefronts by refractive-index tuning and mechanical stretching. We experimentally demonstrate proof-of-principle thermo-optically tuned nonlocal metasurfaces made of silicon and numerically demonstrate nonlocal metasurfaces that thermo-optically switch between distinct wavefront shapes. This meta-optics platform for thermally reconfigurable wavefront shaping requires neither unusual materials and fabrication nor active control of individual meta-units.


2003 ◽  
Vol 478 ◽  
pp. 1-10 ◽  
Author(s):  
KRISTIAN B. DYSTHE ◽  
KARSTEN TRULSEN ◽  
HARALD E. KROGSTAD ◽  
HERVÉ SOCQUET-JUGLARD

Numerical simulations of the evolution of gravity wave spectra of fairly narrow bandwidth have been performed both for two and three dimensions. Simulations using the nonlinear Schrödinger (NLS) equation approximately verify the stability criteria of Alber (1978) in the two-dimensional but not in the three-dimensional case. Using a modified NLS equation (Trulsen et al. 2000) the spectra ‘relax’ towards a quasi-stationary state on a timescale (ε2ω0)−1. In this state the low-frequency face is steepened and the spectral peak is downshifted. The three-dimensional simulations show a power-law behaviour ω−4 on the high-frequency side of the (angularly integrated) spectrum.


2004 ◽  
Vol 82 (12) ◽  
pp. 1854-1863 ◽  
Author(s):  
Samantha Stoffberg ◽  
David S Jacobs

On the basis of its external morphology, Myotis tricolor (Temminck, 1832) should be able to both aerial-feed and glean. Furthermore, this bat is known to use broadband calls of short duration, reinforcing the prediction that it gleans. However, results from this study indicate that M. tricolor does not commonly glean. This conclusion was reached after studying the foraging behaviour of M. tricolor in a flight room. We presented M. tricolor with mealworms, moths, mole crickets, beetles, and cicadas in a variety of ways that required either gleaning and (or) aerial feeding. Although M. tricolor readily took tethered prey, it did not take any of the variety of insects presented to it in a manner that required gleaning. We therefore compared its wing morphology and echolocation calls with those of several known gleaners, Nycteris thebaica E. Geoffroy, 1818, Myotis lucifugus (Le Conte, 1831), and Myotis septentrionalis (Trouessart, 1897), and an aerial forager, Neoromicia capensis (A. Smith, 1829). In a discriminant analysis wing-tip shape was the only variable to provide some degree of discrimination between species, with M. tricolor having more pointed wing tips than the known gleaners. Discriminant analysis of echolocation-call parameters grouped M. tricolor with the other Myotis species and separated it from N. capensis and N. thebaica. However, M. tricolor did not use harmonics as did the other Myotis species. The apparent failure of M. tricolor to glean might therefore be due to its relatively pointed wings and narrow-bandwidth echolocation calls, owing to the absence of harmonics in its calls.


1981 ◽  
Author(s):  
J. Henaff ◽  
M. Feldmann ◽  
M. Carel
Keyword(s):  

2013 ◽  
Author(s):  
Carlos A. F. Marques ◽  
Lúcia Bilro ◽  
David J. Webb ◽  
Rogério N. Nogueira

Sign in / Sign up

Export Citation Format

Share Document