scholarly journals Distortion minimization of disks for gear manufacture

2011 ◽  
Vol 51 (4) ◽  
pp. 331-338 ◽  
Author(s):  
Ekkard Brinksmeier ◽  
Thomas Lübben ◽  
Udo Fritsching ◽  
Chengsong Cui ◽  
Rüdiger Rentsch ◽  
...  
2011 ◽  
Vol 5 (6) ◽  
pp. 613-620 ◽  
Author(s):  
Tim Kohlhoff ◽  
Jens Sölter ◽  
Ekkard Brinksmeier

Author(s):  
Zoubir Zeghdi ◽  
Linda Barazane ◽  
Youcef Bekakra ◽  
Abdelkader Larabi

In this paper, an improved Backstepping control based on a recent optimization method called Ant Lion Optimizer (ALO) algorithm for a Doubly Fed Induction Generator (DFIG) driven by a wind turbine is designed and presented. ALO algorithm is applied for obtaining optimum Backstepping control (BCS) parameters that are able to make the drive more robust with a faster dynamic response, higher accuracy and steady performance. The fitness function of the ALO algorithm to be minimized is designed using some indexes criterion like Integral Time Absolute Error (ITAE) and Integral Time Square Error (ITSE). Simulation tests are carried out in MATLAB/Simulink environment to validate the effectiveness of the proposed BCS-ALO and compared to the conventional BCS control. The results prove that the objectives of this paper were accomplished in terms of robustness, better dynamic efficiency, reduced harmonic distortion, minimization of stator powers ripples and performing well in solving the problem of uncertainty of the model parameter.


2005 ◽  
pp. 139-153

Abstract Powder metallurgy (P/M) is a flexible metalworking process for the production of gears. The P/M process is capable of producing close tolerance gears with strengths to 1240 MPa at economical prices in higher volume quantities. This chapter discusses the capabilities, limitations, process advantages, forms, tolerances, design, tooling, performance, quality control, and inspection of P/M gear manufacture. In addition, it presents examples that illustrate the versatility of the P/M process for gear manufacture.


Author(s):  
Vilmos V Simon

A new method is presented for advanced manufacture of hypoid gears on numerical controlled machine tool. The tool geometry and machine tool settings are determined to introduce the optimal tooth modifications into the teeth of hypoid gears. The goal is to reduce the maximum tooth contact stresses, angular displacement error of the driven gear, and energy losses in the oil film existing between tooth surfaces. The calculation is based on the optimal variation of machine tool settings on the classical machine tool for hypoid gear manufacture. The novelty of the method is that during the machining process of teeth surfaces, the variation of machine tool settings on the cradle-type hypoid generator is conducted by polynomial functions of fifth-order. By an algorithm, this variation of machine tool settings is transferred to the numerical controlled machine tool for hypoid gear manufacture (hypoid generator). The obtained results have shown that by applying the optimal manufacture process, considerable reductions in tooth contact stresses and angular displacement errors of the driven gear, and a moderate reduction in energy losses were obtained. Therefore, by applying this new method in practice, advanced manufacture of hypoid gears on CNC hypoid generator is made possible, resulting improved operating characteristics of the hypoid gear pair.


Sign in / Sign up

Export Citation Format

Share Document